Shaohai Wu, Weijiang Gan, Xianren Zhou, Zhini Bin, Jun Chen, Wang Li, Huajun Lai, Zhongmin Wang
{"title":"Enhancement of Hydrogen-Sensing Properties of Pd-Modified WO3 Nanocubes via Tannic Acid-Assisted Surface Functionalization","authors":"Shaohai Wu, Weijiang Gan, Xianren Zhou, Zhini Bin, Jun Chen, Wang Li, Huajun Lai, Zhongmin Wang","doi":"10.1021/acssensors.5c00268","DOIUrl":null,"url":null,"abstract":"The growing use of hydrogen as a clean energy source demands the development of efficient and reliable sensors to ensure safety. Traditional metal–oxide–semiconductors, particularly WO<sub>3</sub>, face challenges such as limited sensitivity, high operating temperatures, and slow response times. The present study explores the enhancement of hydrogen-sensing properties through the modification of WO<sub>3</sub> with Pd nanoparticles utilizing tannic acid (TA)-assisted surface functionalization. Due to its branched molecular structure and inherent phenolic characteristics, TA plays a significant role as a mediator in facilitating the adsorption of Pd onto the surface of WO<sub>3</sub>. Furthermore, TA effectively prevents the agglomeration of Pd, a result of the unique growth patterns of TA observed during high-temperature pyrolysis. Optimal content of Pd and TA is 0.10 atom % and 0.25 g, respectively. The gas sensor of 0.25 g TA@WO<sub>3</sub>-0.10 atom % Pd exhibits remarkable sensitivity with a response value of 456, alongside a rapid response time of 1 s at 200 °C toward 500 ppm hydrogen. Additionally, the gas sensor demonstrates excellent stability and reproducibility over multiple cycles. The enhanced performance is attributed to the synergistic effect of the formation of oxygen vacancies increasing active sites, the uniform dispersion of Pd nanoparticles facilitated by TA, and the catalytic activity of Pd accelerating hydrogen adsorption and reaction kinetics. This research highlights the potential of ecofriendly materials to enhance hydrogen sensor performance for safety monitoring.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"8 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.5c00268","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The growing use of hydrogen as a clean energy source demands the development of efficient and reliable sensors to ensure safety. Traditional metal–oxide–semiconductors, particularly WO3, face challenges such as limited sensitivity, high operating temperatures, and slow response times. The present study explores the enhancement of hydrogen-sensing properties through the modification of WO3 with Pd nanoparticles utilizing tannic acid (TA)-assisted surface functionalization. Due to its branched molecular structure and inherent phenolic characteristics, TA plays a significant role as a mediator in facilitating the adsorption of Pd onto the surface of WO3. Furthermore, TA effectively prevents the agglomeration of Pd, a result of the unique growth patterns of TA observed during high-temperature pyrolysis. Optimal content of Pd and TA is 0.10 atom % and 0.25 g, respectively. The gas sensor of 0.25 g TA@WO3-0.10 atom % Pd exhibits remarkable sensitivity with a response value of 456, alongside a rapid response time of 1 s at 200 °C toward 500 ppm hydrogen. Additionally, the gas sensor demonstrates excellent stability and reproducibility over multiple cycles. The enhanced performance is attributed to the synergistic effect of the formation of oxygen vacancies increasing active sites, the uniform dispersion of Pd nanoparticles facilitated by TA, and the catalytic activity of Pd accelerating hydrogen adsorption and reaction kinetics. This research highlights the potential of ecofriendly materials to enhance hydrogen sensor performance for safety monitoring.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.