Tom S. Weber, Christine Biben, Denise C. Miles, Stefan P. Glaser, Sara Tomei, Cheng-Yu Lin, Andrew Kueh, Martin Pal, Stephen Zhang, Patrick P.L. Tam, Samir Taoudi, Shalin H. Naik
{"title":"LoxCode in vivo barcoding reveals epiblast clonal fate bias to fetal organs","authors":"Tom S. Weber, Christine Biben, Denise C. Miles, Stefan P. Glaser, Sara Tomei, Cheng-Yu Lin, Andrew Kueh, Martin Pal, Stephen Zhang, Patrick P.L. Tam, Samir Taoudi, Shalin H. Naik","doi":"10.1016/j.cell.2025.04.026","DOIUrl":null,"url":null,"abstract":"Much remains to be learned about the clonal fate of mammalian epiblast cells. Here, we develop high-diversity Cre recombinase-driven LoxCode barcoding for <em>in vivo</em> clonal lineage tracing for bulk tissue and single-cell readout. Embryonic day (E) 5.5 pre-gastrulation embryos were barcoded <em>in utero</em>, and epiblast clones were assessed for their contribution to a wide range of tissues in E12.5 embryos. Some epiblast clones contributed broadly across germ layers, while many were biased toward either blood, ectoderm, mesenchyme, or limbs, across tissue compartments and body axes. Using a stochastic agent-based model of embryogenesis and LoxCode barcoding, we inferred and experimentally validated cell fate biases across tissues in line with shared and segregating differentiation trajectories. Single-cell readout revealed numerous instances of asymmetry in epiblast contribution, including left-versus-right and kidney-versus-gonad fate. LoxCode barcoding enables clonal fate analysis for the study of development and broader questions of clonality in murine biology.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"27 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2025.04.026","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Much remains to be learned about the clonal fate of mammalian epiblast cells. Here, we develop high-diversity Cre recombinase-driven LoxCode barcoding for in vivo clonal lineage tracing for bulk tissue and single-cell readout. Embryonic day (E) 5.5 pre-gastrulation embryos were barcoded in utero, and epiblast clones were assessed for their contribution to a wide range of tissues in E12.5 embryos. Some epiblast clones contributed broadly across germ layers, while many were biased toward either blood, ectoderm, mesenchyme, or limbs, across tissue compartments and body axes. Using a stochastic agent-based model of embryogenesis and LoxCode barcoding, we inferred and experimentally validated cell fate biases across tissues in line with shared and segregating differentiation trajectories. Single-cell readout revealed numerous instances of asymmetry in epiblast contribution, including left-versus-right and kidney-versus-gonad fate. LoxCode barcoding enables clonal fate analysis for the study of development and broader questions of clonality in murine biology.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.