Full-color processible afterglow organic small molecular glass

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yufeng Xue, Zongliang Xie, Zheng Yin, Yincai Xu, Bin Liu
{"title":"Full-color processible afterglow organic small molecular glass","authors":"Yufeng Xue, Zongliang Xie, Zheng Yin, Yincai Xu, Bin Liu","doi":"10.1038/s41467-025-59787-y","DOIUrl":null,"url":null,"abstract":"<p>Organic afterglow materials, known for their unique luminescent properties and diverse applications, have garnered significant attention in recent years. However, developing long-lasting, high-efficiency, full-color afterglow systems and exploring simple materials processing strategies for new applications are still challenging in this field. Herein, we rationally design a processable molecular glass and employ it as a host in a host-guest strategy to address these challenges. By strategically modifying the host via othyl-methylation, we successfully create a molecular glass and capture its temperature-dependent, processable viscous supercooled liquid state. High-efficiency full color from violet to near-infrared afterglow systems with ultralong lifetimes are developed by doping varied structural dopants. The underlying glass-forming and afterglow mechanisms are also clearly elucidated and verified. Moreover, the excellent glass-forming ability of the host and its viscous supercooled liquid enabled the glass system for large-area fabrication, shaping of objects with diverse 3D structures, and creation of flexible, meter-long afterglow fibers. This work offers significant potential for practical applications in advanced textiles, displays, and other fields.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"29 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59787-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Organic afterglow materials, known for their unique luminescent properties and diverse applications, have garnered significant attention in recent years. However, developing long-lasting, high-efficiency, full-color afterglow systems and exploring simple materials processing strategies for new applications are still challenging in this field. Herein, we rationally design a processable molecular glass and employ it as a host in a host-guest strategy to address these challenges. By strategically modifying the host via othyl-methylation, we successfully create a molecular glass and capture its temperature-dependent, processable viscous supercooled liquid state. High-efficiency full color from violet to near-infrared afterglow systems with ultralong lifetimes are developed by doping varied structural dopants. The underlying glass-forming and afterglow mechanisms are also clearly elucidated and verified. Moreover, the excellent glass-forming ability of the host and its viscous supercooled liquid enabled the glass system for large-area fabrication, shaping of objects with diverse 3D structures, and creation of flexible, meter-long afterglow fibers. This work offers significant potential for practical applications in advanced textiles, displays, and other fields.

Abstract Image

全彩可加工余辉有机小分子玻璃
近年来,有机余辉材料以其独特的发光特性和广泛的应用而备受关注。然而,在这一领域,开发持久、高效、全彩的余辉系统和探索简单的材料加工策略仍然具有挑战性。在此,我们合理地设计了一种可加工的分子玻璃,并将其作为主客策略中的宿主来解决这些挑战。通过策略性地通过甲基化修饰宿主,我们成功地创造了一个分子玻璃,并捕获了它的温度依赖,可加工的粘性过冷液态。通过掺杂不同结构的掺杂剂,开发了具有超长寿命的紫外至近红外高效全彩色余辉系统。潜在的玻璃形成和余辉机制也清楚地阐明和验证。此外,母体及其粘性过冷液体的优异玻璃成形能力使玻璃系统能够进行大面积制造,塑造具有不同3D结构的物体,并创建柔性的米长的余辉纤维。这项工作在高级纺织品、显示器和其他领域的实际应用具有重要的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信