Panfeng Gao, Han Shen, Xiaoman Gui, Jianling Ni, Shisong Sun, Meixiu Wan and Lijun Huo
{"title":"Efficient thick film all-polymer solar cells enabled by incorporating an ester-substituted non-fullerene-based polymer acceptor†","authors":"Panfeng Gao, Han Shen, Xiaoman Gui, Jianling Ni, Shisong Sun, Meixiu Wan and Lijun Huo","doi":"10.1039/D5PY00302D","DOIUrl":null,"url":null,"abstract":"<p >The low tolerance of thickness variations in all-polymer solar cells (all-PSCs) is currently becoming a new challenge to achieving efficient power conversion efficiencies (PCEs) and large-scale production. Compared with small molecular acceptors (SMA) systems, polymer acceptors in all-PSCs usually possess lower crystalline properties and imbalanced charge transportation characteristics, which limit their active layer thicknesses and PCEs. In this work, ester-substituted side chains were incorporated onto a thiophene–vinylene–thiophene (TVT) backbone to construct a non-fullerene Y-series polymer acceptor. It exhibited strengthened π–π stacking and higher charge mobility than its alkyl-substituted counterpart. When the ester-substituted polymer acceptor was blended with the donor PM6, it delivered a champion PCE of 16.48% with a high <em>V</em><small><sub>oc</sub></small> and FF. Impressively, the device efficiencies are insensitive to variation in the photoactive layer thickness and can maintain over 80% of the optimized efficiency as the film thickness increases to 400 nm, which is the best result for an all-PSC so far. This work not only achieved synergism between high efficiency and thickness-insensitivity in an all-PSC device, but also demonstrated that the TVT-containing backbone can be further optimized by incorporating reasonable functional groups to construct highly crystalline Y series polymer acceptors.</p>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":" 22","pages":" 2670-2679"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/py/d5py00302d","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The low tolerance of thickness variations in all-polymer solar cells (all-PSCs) is currently becoming a new challenge to achieving efficient power conversion efficiencies (PCEs) and large-scale production. Compared with small molecular acceptors (SMA) systems, polymer acceptors in all-PSCs usually possess lower crystalline properties and imbalanced charge transportation characteristics, which limit their active layer thicknesses and PCEs. In this work, ester-substituted side chains were incorporated onto a thiophene–vinylene–thiophene (TVT) backbone to construct a non-fullerene Y-series polymer acceptor. It exhibited strengthened π–π stacking and higher charge mobility than its alkyl-substituted counterpart. When the ester-substituted polymer acceptor was blended with the donor PM6, it delivered a champion PCE of 16.48% with a high Voc and FF. Impressively, the device efficiencies are insensitive to variation in the photoactive layer thickness and can maintain over 80% of the optimized efficiency as the film thickness increases to 400 nm, which is the best result for an all-PSC so far. This work not only achieved synergism between high efficiency and thickness-insensitivity in an all-PSC device, but also demonstrated that the TVT-containing backbone can be further optimized by incorporating reasonable functional groups to construct highly crystalline Y series polymer acceptors.
期刊介绍:
Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.