Hongshun Yao, Yu-Ao Chen, Erdong Huang, Kaichu Chen, Honghao Fu and Xin Wang
{"title":"Protocols and trade-offs of quantum state purification","authors":"Hongshun Yao, Yu-Ao Chen, Erdong Huang, Kaichu Chen, Honghao Fu and Xin Wang","doi":"10.1088/2058-9565/add17e","DOIUrl":null,"url":null,"abstract":"Quantum state purification is crucial in quantum communication and computation, aiming to recover a purified state from multiple copies of an unknown noisy state. This work introduces a general state purification framework designed to achieve the highest fidelity with a specified probability and characterize the associated trade-offs. For i.i.d. quantum states under depolarizing noise, our framework can replicate the purification protocol proposed by Barenco et al (1997 SIAM J. Comput.26 1541–57) and further provide exact formulas for the purification fidelity and probability with explicit trade-offs. We prove the protocols’ optimality for two copies of noisy states with any dimension and confirm its optimality for higher numbers of copies and dimensions through numerical analysis. Our methodological approach paves the way for proving the protocol’s optimality in more general scenarios and leads to optimal protocols for other noise models. Furthermore, we present a systematic implementation method via block encoding and parameterized quantum circuits, providing explicit circuits for purifying three-copy and four-copy states under depolarizing noise. Finally, we estimate the sample complexity and generalize the protocol to a recursive form, demonstrating its practicality for quantum computers with limited memory.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"55 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/add17e","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum state purification is crucial in quantum communication and computation, aiming to recover a purified state from multiple copies of an unknown noisy state. This work introduces a general state purification framework designed to achieve the highest fidelity with a specified probability and characterize the associated trade-offs. For i.i.d. quantum states under depolarizing noise, our framework can replicate the purification protocol proposed by Barenco et al (1997 SIAM J. Comput.26 1541–57) and further provide exact formulas for the purification fidelity and probability with explicit trade-offs. We prove the protocols’ optimality for two copies of noisy states with any dimension and confirm its optimality for higher numbers of copies and dimensions through numerical analysis. Our methodological approach paves the way for proving the protocol’s optimality in more general scenarios and leads to optimal protocols for other noise models. Furthermore, we present a systematic implementation method via block encoding and parameterized quantum circuits, providing explicit circuits for purifying three-copy and four-copy states under depolarizing noise. Finally, we estimate the sample complexity and generalize the protocol to a recursive form, demonstrating its practicality for quantum computers with limited memory.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.