{"title":"Advances in Multimodal Electrohydrodynamic Printing for High-Resolution Sensor Fabrication: Mechanisms, Materials, and Applications","authors":"Boxuan Zhang, Jinzhe Li, Zhifu Yin, Xue Yang","doi":"10.1039/d5nr01375e","DOIUrl":null,"url":null,"abstract":"With the rapid development of micro-electromechanical systems (MEMS) and the manufacturing industry, the trends toward sensor intelligence, miniaturization, and flexibility have attracted significant attention, while posing higher demands for high-resolution patterning and large-scale production. However, traditional manufacturing technologies exhibit significant limitations in achieving high resolution and multifunctional integration. Electrohydrodynamic (EHD) printing technology, which harnesses the synergistic effects of electric fields and fluid dynamics, enables precise control over the formation and deposition of micro-nanometer jets. It offers ultra-high resolution, broad material compatibility, and controllable three-dimensional structural formation, providing innovative solutions for the intelligent, miniature, and flexible integration of sensors. This paper systematically reviews the mechanisms and applications of three EHD printing modes—EHD jet printing, electrospray and electrospinning. It further describes the progress in the printing of materials suitable for EHD printing, including metal nanoparticles, conductive polymers, carbon-based materials, and piezoelectric ceramics. Additionally, the application progress of gas, temperature, humidity, and piezoelectric sensors based on the three EHD printing modes is summarized, highlighting their advantages in sensitivity, response speed, and environmental adaptability. The paper also explores the challenges of low efficiency and future development directions, such as multi-nozzle coordination, nozzle structure optimization, roll-to-roll integration manufacturing, and intelligent process control. Finally, a brief summary and the outlook for future research effort are presented.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"111 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nr01375e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of micro-electromechanical systems (MEMS) and the manufacturing industry, the trends toward sensor intelligence, miniaturization, and flexibility have attracted significant attention, while posing higher demands for high-resolution patterning and large-scale production. However, traditional manufacturing technologies exhibit significant limitations in achieving high resolution and multifunctional integration. Electrohydrodynamic (EHD) printing technology, which harnesses the synergistic effects of electric fields and fluid dynamics, enables precise control over the formation and deposition of micro-nanometer jets. It offers ultra-high resolution, broad material compatibility, and controllable three-dimensional structural formation, providing innovative solutions for the intelligent, miniature, and flexible integration of sensors. This paper systematically reviews the mechanisms and applications of three EHD printing modes—EHD jet printing, electrospray and electrospinning. It further describes the progress in the printing of materials suitable for EHD printing, including metal nanoparticles, conductive polymers, carbon-based materials, and piezoelectric ceramics. Additionally, the application progress of gas, temperature, humidity, and piezoelectric sensors based on the three EHD printing modes is summarized, highlighting their advantages in sensitivity, response speed, and environmental adaptability. The paper also explores the challenges of low efficiency and future development directions, such as multi-nozzle coordination, nozzle structure optimization, roll-to-roll integration manufacturing, and intelligent process control. Finally, a brief summary and the outlook for future research effort are presented.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.