Ruixue Li, Nan Wang, Jingjing Guo, Boyuan Xue, Chun Liu, Yong Guo, Xiaohong Zhou
{"title":"Validation of methods for enriching and detecting SARS-CoV-2 RNA in wastewater","authors":"Ruixue Li, Nan Wang, Jingjing Guo, Boyuan Xue, Chun Liu, Yong Guo, Xiaohong Zhou","doi":"10.1007/s10311-025-01843-6","DOIUrl":null,"url":null,"abstract":"<p>Monitoring virus concentrations in wastewater is crucial for tracking community viral spread, yet reliable virus enrichment and detection methods are lacking. We compared four preconcentration-detection methods for tracing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater: ultrafiltration and covalent affinity resin separation, paired with either reverse transcription-quantitative polymerase chain reaction (PCR) or reverse transcription-digital PCR. Tests were conducted on raw sewage from a campus dormitory septic tank in May 2023. Results show that the concentrations of coronavirus RNA in wastewater enriched by ultrafiltration were higher than those enriched by covalent affinity resin separation, regardless of the detection methods used. Digital PCR exhibited detection rates of 45.4% using covalent affinity resin separation, and 77.3% using ultrafiltration. These detection rates were 36.4% and 72.7% higher than those using quantitative PCR. A correlation coefficient of 0.70 between concentrations measured by quantitative and digital PCR was only observed for samples enriched by covalent affinity resin separation.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"13 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10311-025-01843-6","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring virus concentrations in wastewater is crucial for tracking community viral spread, yet reliable virus enrichment and detection methods are lacking. We compared four preconcentration-detection methods for tracing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater: ultrafiltration and covalent affinity resin separation, paired with either reverse transcription-quantitative polymerase chain reaction (PCR) or reverse transcription-digital PCR. Tests were conducted on raw sewage from a campus dormitory septic tank in May 2023. Results show that the concentrations of coronavirus RNA in wastewater enriched by ultrafiltration were higher than those enriched by covalent affinity resin separation, regardless of the detection methods used. Digital PCR exhibited detection rates of 45.4% using covalent affinity resin separation, and 77.3% using ultrafiltration. These detection rates were 36.4% and 72.7% higher than those using quantitative PCR. A correlation coefficient of 0.70 between concentrations measured by quantitative and digital PCR was only observed for samples enriched by covalent affinity resin separation.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.