{"title":"Discovery of MMP1 Inhibitors from Dandelion using Molecular Simulation and Bioactivity Test.","authors":"Yaxuan Huang, Dewen Jiang, Liqin Zhang, Yonghao Zhang, Mingkai Wu, Xiaojie Jin, Jianjun Luo, Dabo Pan","doi":"10.2174/0115680266387669250509094221","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>MMP1 (matrix metallopeptidase 1) plays a significant role in the degradation of collagen fibres within the extracellular matrix, and has been linked to a multitude of biological processes, including rheumatoid arthritis, osteoarthritis, periodontal disease, and tumor invasion.</p><p><strong>Objective: </strong>In order to discover inhibitors of MMP1 that originate from the phytochemicals of the dandelion (Taraxacum mongolicum Hand.-Mazz.).</p><p><strong>Methods: </strong>The herbal constituents of the dandelion were retrieved from the HERB database. A multifaceted approach including molecular docking, MMP1 enzyme assays, and molecular dynamics simulations was used to identify potential MMP1 inhibitors among the chemical compounds present in the dandelion.</p><p><strong>Results: </strong>A total of 61 chemical constituents of the dandelion were collated from the HERB database. A potential MMP1 inhibitor was identified through a combination of molecular docking and an MMP1 enzyme bioactivity assay. Cichoric acid demonstrated pronounced inhibitory activity against MMP1, with an IC50 value of 7.81 ± 2.60 µM. Molecular dynamics simulations and binding free energy calculations indicated that the nonpolar interaction energies of LEU181, ARG214, VAL215, HIS218, GLU219, HIS228, PRO238, and SER239 played a primary role in the binding of cichoric acid to MMP1.</p><p><strong>Conclusion: </strong>The integration of molecular modeling and bioactivity testing proved an effective method for the rapid discovery of targeted small molecule inhibitors. Cichoric acid demonstrated potent MMP1 inhibitory activity and thus represented a promising candidate for further development.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266387669250509094221","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: MMP1 (matrix metallopeptidase 1) plays a significant role in the degradation of collagen fibres within the extracellular matrix, and has been linked to a multitude of biological processes, including rheumatoid arthritis, osteoarthritis, periodontal disease, and tumor invasion.
Objective: In order to discover inhibitors of MMP1 that originate from the phytochemicals of the dandelion (Taraxacum mongolicum Hand.-Mazz.).
Methods: The herbal constituents of the dandelion were retrieved from the HERB database. A multifaceted approach including molecular docking, MMP1 enzyme assays, and molecular dynamics simulations was used to identify potential MMP1 inhibitors among the chemical compounds present in the dandelion.
Results: A total of 61 chemical constituents of the dandelion were collated from the HERB database. A potential MMP1 inhibitor was identified through a combination of molecular docking and an MMP1 enzyme bioactivity assay. Cichoric acid demonstrated pronounced inhibitory activity against MMP1, with an IC50 value of 7.81 ± 2.60 µM. Molecular dynamics simulations and binding free energy calculations indicated that the nonpolar interaction energies of LEU181, ARG214, VAL215, HIS218, GLU219, HIS228, PRO238, and SER239 played a primary role in the binding of cichoric acid to MMP1.
Conclusion: The integration of molecular modeling and bioactivity testing proved an effective method for the rapid discovery of targeted small molecule inhibitors. Cichoric acid demonstrated potent MMP1 inhibitory activity and thus represented a promising candidate for further development.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.