{"title":"[Screening and characterization of camelid-derived nanobodies against hemoglobin].","authors":"Ning Zhong, Wenhui Lei, Zuying Liu, Xiaoxiao Xie, Lingjing Zhang, Tengchuan Jin, Minjie Cao, Yulei Chen","doi":"10.13345/j.cjb.240777","DOIUrl":null,"url":null,"abstract":"<p><p>Hemoglobin, the principal protein in red blood cells, is crucial for oxygen transport in the bloodstream. The quantification of hemoglobin concentration is indispensable in medical diagnostics and health management, which encompass the diagnosis of anemia and the screening of various blood disorders. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy. Consequently, it is necessary to develop hemoglobin-specific antibodies characterized by high specificity and affinity to enhance detection accuracy. In this study, we immunized a Bactrian camel (<i>Camelus bactrianus</i>) with human hemoglobin and subsequently constructed a nanobody library. Utilizing a solid-phase screening method, we selected nanobodies and evaluated the binding activity of the screened nanobodies to hemoglobin. Initially, human hemoglobin was used to immunize a Bactrian camel. Following four immunization sessions, blood was withdrawn from the jugular vein, and a nanobody library with a capacity of 2.85×10<sup>8</sup> colony forming units (CFU) was generated. Subsequently, ten hemoglobin-specific nanobody sequences were identified through three rounds of adsorption-elution-enrichment assays, and these nanobodies were subjected to eukaryotic expression. Finally, enzyme-linked immunosorbent assay and biolayer interferometry were employed to evaluate the stability, binding activity, and specificity of these nanobodies. The results demonstrated that the nanobodies maintained robust binding activity within the temperature range of 20-40 ℃ and exhibited the highest binding activity at pH 7.0. Furthermore, the nanobodies were capable of tolerating a 10% methanol solution. Notably, among the nanobodies tested, VHH-12 displayed the highest binding activity to hemoglobin, with a half maximal effective concentration (EC<sub>50</sub>) of 10.63 nmol/L and a equilibrium dissociation constant (K<sub>D</sub>) of 2.94×10<sup>-7</sup> mol/L. VHH-12 exhibited no cross-reactivity with a panel of eight proteins, such as ovalbumin and bovine serum albumin, while demonstrating partial cross-reactivity with hemoglobin derived from porcine, goat, rabbit, and bovine sources. In this study, a hemoglobin-specific high-affinity nanobody was successfully isolated, demonstrating potential applications in disease diagnosis and health monitoring.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 4","pages":"1515-1534"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Hemoglobin, the principal protein in red blood cells, is crucial for oxygen transport in the bloodstream. The quantification of hemoglobin concentration is indispensable in medical diagnostics and health management, which encompass the diagnosis of anemia and the screening of various blood disorders. Immunological methods, based on antigen-antibody interactions, are distinguished by their high sensitivity and accuracy. Consequently, it is necessary to develop hemoglobin-specific antibodies characterized by high specificity and affinity to enhance detection accuracy. In this study, we immunized a Bactrian camel (Camelus bactrianus) with human hemoglobin and subsequently constructed a nanobody library. Utilizing a solid-phase screening method, we selected nanobodies and evaluated the binding activity of the screened nanobodies to hemoglobin. Initially, human hemoglobin was used to immunize a Bactrian camel. Following four immunization sessions, blood was withdrawn from the jugular vein, and a nanobody library with a capacity of 2.85×108 colony forming units (CFU) was generated. Subsequently, ten hemoglobin-specific nanobody sequences were identified through three rounds of adsorption-elution-enrichment assays, and these nanobodies were subjected to eukaryotic expression. Finally, enzyme-linked immunosorbent assay and biolayer interferometry were employed to evaluate the stability, binding activity, and specificity of these nanobodies. The results demonstrated that the nanobodies maintained robust binding activity within the temperature range of 20-40 ℃ and exhibited the highest binding activity at pH 7.0. Furthermore, the nanobodies were capable of tolerating a 10% methanol solution. Notably, among the nanobodies tested, VHH-12 displayed the highest binding activity to hemoglobin, with a half maximal effective concentration (EC50) of 10.63 nmol/L and a equilibrium dissociation constant (KD) of 2.94×10-7 mol/L. VHH-12 exhibited no cross-reactivity with a panel of eight proteins, such as ovalbumin and bovine serum albumin, while demonstrating partial cross-reactivity with hemoglobin derived from porcine, goat, rabbit, and bovine sources. In this study, a hemoglobin-specific high-affinity nanobody was successfully isolated, demonstrating potential applications in disease diagnosis and health monitoring.
期刊介绍:
Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.