Fanlong Wang, Mingliang Qiu, Lei Hou, Xianbi Li, Hui Ren, Jingxin Zhuo, Haoru Liu, Yujie Li, Yang Yang, Xingying Yan, Mi Zhang, Dan Jin, Ting Lan, Jianyan Zeng, Yanhua Fan, Yang Yuan, Zhengqiang Ma, Yan Pei
{"title":"N terminus and C terminus of Arabidopsis P4-ATPase AtALA1 facilitate the detoxification of the mycotoxin deoxynivalenol in wheat.","authors":"Fanlong Wang, Mingliang Qiu, Lei Hou, Xianbi Li, Hui Ren, Jingxin Zhuo, Haoru Liu, Yujie Li, Yang Yang, Xingying Yan, Mi Zhang, Dan Jin, Ting Lan, Jianyan Zeng, Yanhua Fan, Yang Yuan, Zhengqiang Ma, Yan Pei","doi":"10.1016/j.celrep.2025.115641","DOIUrl":null,"url":null,"abstract":"<p><p>Fusarium head blight (FHB) is a devastating disease affecting many important cereal crops. The disease is mainly caused by Fusarium graminearum, which produces mycotoxins, e.g., deoxynivalenol (DON), that contaminate grains, leading to serious issues in food safety worldwide. Here, we demonstrate that expressing the Arabidopsis P4-ATPase flippase gene, AtALA1, significantly increases wheat resistance to FHB, while substantially reducing DON content in grains. However, expressing TaALA1s, the wheat homologs of AtALA1, does not enhance the resistance. We discovered that the N terminus and C terminus of AtALA1 are crucial for its role in DON detoxification. The motif [DE]<sub>n</sub>X<sub>1-2</sub>FXX[FL]XXXR, found exclusively in the N terminus of ALA1s in Brassicaceae species, facilitates AtALA1-associated vesicle transport by binding with AP-2. Meanwhile the DON-stimulated phosphorylation at three key sites in the C terminus is responsible for promoting DON trafficking into vacuoles. Our findings suggest a great potential for vesicle-associated detoxification in FHB resistance and food safety.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 5","pages":"115641"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115641","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fusarium head blight (FHB) is a devastating disease affecting many important cereal crops. The disease is mainly caused by Fusarium graminearum, which produces mycotoxins, e.g., deoxynivalenol (DON), that contaminate grains, leading to serious issues in food safety worldwide. Here, we demonstrate that expressing the Arabidopsis P4-ATPase flippase gene, AtALA1, significantly increases wheat resistance to FHB, while substantially reducing DON content in grains. However, expressing TaALA1s, the wheat homologs of AtALA1, does not enhance the resistance. We discovered that the N terminus and C terminus of AtALA1 are crucial for its role in DON detoxification. The motif [DE]nX1-2FXX[FL]XXXR, found exclusively in the N terminus of ALA1s in Brassicaceae species, facilitates AtALA1-associated vesicle transport by binding with AP-2. Meanwhile the DON-stimulated phosphorylation at three key sites in the C terminus is responsible for promoting DON trafficking into vacuoles. Our findings suggest a great potential for vesicle-associated detoxification in FHB resistance and food safety.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.