Charlotte Maserumule, Charlotte Passemar, Olivia S H Oh, Kriztina Hegyi, Karen Brown, Aaron Weimann, Adam Dinan, Sonia Davila, Catherine Klapholz, Josephine Bryant, Deepshikha Verma, Jacob Gadwa, Shivankari Krishnananthasivam, Kridakorn Vongtongsalee, Edward Kendall, Andres Trelles, Martin L Hibberd, Joaquín Sanz, Jorge Bertol, Lucia Vázquez-Iniesta, Kaliappan Andi, S Siva Kumar, Diane Ordway, Rafael Prados-Rosales, Paul A MacAry, R Andres Floto
{"title":"Phagosomal RNA sensing through TLR8 controls susceptibility to tuberculosis.","authors":"Charlotte Maserumule, Charlotte Passemar, Olivia S H Oh, Kriztina Hegyi, Karen Brown, Aaron Weimann, Adam Dinan, Sonia Davila, Catherine Klapholz, Josephine Bryant, Deepshikha Verma, Jacob Gadwa, Shivankari Krishnananthasivam, Kridakorn Vongtongsalee, Edward Kendall, Andres Trelles, Martin L Hibberd, Joaquín Sanz, Jorge Bertol, Lucia Vázquez-Iniesta, Kaliappan Andi, S Siva Kumar, Diane Ordway, Rafael Prados-Rosales, Paul A MacAry, R Andres Floto","doi":"10.1016/j.celrep.2025.115657","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic determinants of susceptibility to Mycobacterium tuberculosis (Mtb) remain poorly understood but could provide insights into critical pathways involved in infection, informing host-directed therapies and enabling risk stratification at individual and population levels. Through a genome-wide forward genetic screen, we identify Toll-like receptor 8 (TLR8) as a key regulator of intracellular killing of Mtb. Pharmacological TLR8 activation enhances the killing of phylogenetically diverse clinical isolates of drug-susceptible and multidrug-resistant Mtb by macrophages and during in vivo infection in mice. TLR8 is activated by phagosomal mycobacterial RNA released by extracellular membrane vesicles and enhances xenophagy-dependent Mtb killing. We find that the TLR8 variant M1V, common in Far Eastern populations, enhances intracellular killing of Mtb through preferential signal-dependent trafficking to phagosomes. TLR8 signaling may, therefore, both regulate susceptibility to tuberculosis and provide novel drug targets.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 5","pages":"115657"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115657","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic determinants of susceptibility to Mycobacterium tuberculosis (Mtb) remain poorly understood but could provide insights into critical pathways involved in infection, informing host-directed therapies and enabling risk stratification at individual and population levels. Through a genome-wide forward genetic screen, we identify Toll-like receptor 8 (TLR8) as a key regulator of intracellular killing of Mtb. Pharmacological TLR8 activation enhances the killing of phylogenetically diverse clinical isolates of drug-susceptible and multidrug-resistant Mtb by macrophages and during in vivo infection in mice. TLR8 is activated by phagosomal mycobacterial RNA released by extracellular membrane vesicles and enhances xenophagy-dependent Mtb killing. We find that the TLR8 variant M1V, common in Far Eastern populations, enhances intracellular killing of Mtb through preferential signal-dependent trafficking to phagosomes. TLR8 signaling may, therefore, both regulate susceptibility to tuberculosis and provide novel drug targets.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.