Adaptive responses of Rhodococcus aetherivorans L13 to oligotrophy: genome and transcriptomic analysis.

IF 1.8 4区 生物学 Q3 GENETICS & HEREDITY
Andrea L Gallegos, María E Nashmias, Juan Pablo Zubimendi, Martín A Hernández, Verónica Acosta, Gonzalo A Torres Tejerizo, Juan I Quelas, Roxana A Silva, Héctor M Alvarez
{"title":"Adaptive responses of Rhodococcus aetherivorans L13 to oligotrophy: genome and transcriptomic analysis.","authors":"Andrea L Gallegos, María E Nashmias, Juan Pablo Zubimendi, Martín A Hernández, Verónica Acosta, Gonzalo A Torres Tejerizo, Juan I Quelas, Roxana A Silva, Héctor M Alvarez","doi":"10.1007/s00294-025-01314-z","DOIUrl":null,"url":null,"abstract":"<p><p>The wide ecological distribution of actinobacteria suggests that they have developed efficient mechanisms to adapt to extremely nutritionally deficient (oligotrophic) conditions. The impact of nutrient limitation typically observed in oligotrophic areas on bacteria remains to be assessed for many species. The non-model Rhodococcus aetherivorans L13can grow under oligotrophic conditions, even without an added carbon source. Oligotrophic cells of L13 undergo physiological and morphological changes compared to glucose-grown cells, including forming short-fragmenting cells, producing an extracellular polymeric substance, and a 26-fold decrease in respiratory activity. We conducted genome sequencing of L13 and assembled the entire genome, subsequently comparing the abundance of gene transcripts in oligotrophic cells to those of glucose-grown cells, to explore the oligotrophy-responsive mechanisms at the genetic level. The genome comprises 6,543,485 base pairs, distributed across a single chromosome and six extrachromosomal plasmids (one linear and five circular). RNA-Seq analysis revealed the significant dysregulation of 2,665 genes (44% of the total genes detected). Results suggested a profound reorganization of its carbon and energy metabolism, including the activation of (i) mechanisms for utilizing air components; (ii) various dehydrogenases involved in aldehyde and alcohol metabolism, (iii) several enzymes involved in C2 metabolism, glyoxylate shunt, and TCA bypass routes, and downregulation of several genes that encode CO<sub>2</sub> releasing-decarboxylase enzymes. Our results suggested that the adaptation strategy of L13 to oligotrophic conditions is supported by a combination of metabolic events, including low metabolic activity, the activation of C2 and ketoacids metabolism, and the display of a carbon conservative metabolic program.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":"71 1","pages":"10"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00294-025-01314-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The wide ecological distribution of actinobacteria suggests that they have developed efficient mechanisms to adapt to extremely nutritionally deficient (oligotrophic) conditions. The impact of nutrient limitation typically observed in oligotrophic areas on bacteria remains to be assessed for many species. The non-model Rhodococcus aetherivorans L13can grow under oligotrophic conditions, even without an added carbon source. Oligotrophic cells of L13 undergo physiological and morphological changes compared to glucose-grown cells, including forming short-fragmenting cells, producing an extracellular polymeric substance, and a 26-fold decrease in respiratory activity. We conducted genome sequencing of L13 and assembled the entire genome, subsequently comparing the abundance of gene transcripts in oligotrophic cells to those of glucose-grown cells, to explore the oligotrophy-responsive mechanisms at the genetic level. The genome comprises 6,543,485 base pairs, distributed across a single chromosome and six extrachromosomal plasmids (one linear and five circular). RNA-Seq analysis revealed the significant dysregulation of 2,665 genes (44% of the total genes detected). Results suggested a profound reorganization of its carbon and energy metabolism, including the activation of (i) mechanisms for utilizing air components; (ii) various dehydrogenases involved in aldehyde and alcohol metabolism, (iii) several enzymes involved in C2 metabolism, glyoxylate shunt, and TCA bypass routes, and downregulation of several genes that encode CO2 releasing-decarboxylase enzymes. Our results suggested that the adaptation strategy of L13 to oligotrophic conditions is supported by a combination of metabolic events, including low metabolic activity, the activation of C2 and ketoacids metabolism, and the display of a carbon conservative metabolic program.

嗜热红球菌L13对寡营养的适应性反应:基因组和转录组学分析。
放线菌广泛的生态分布表明,它们已经发展出有效的机制来适应极度营养缺乏(少营养)的条件。营养限制通常在少营养地区观察到的细菌对许多物种的影响仍有待评估。非模式嗜热红球菌l13可以在贫营养条件下生长,即使没有额外的碳源。与葡萄糖生长的细胞相比,L13的少营养细胞发生生理和形态变化,包括形成短片段细胞,产生细胞外聚合物质,呼吸活动减少26倍。我们对L13进行了基因组测序并组装了整个基因组,随后比较了低营养细胞与葡萄糖生长细胞中基因转录本的丰度,从遗传水平上探讨了低营养反应机制。基因组包括6,543,485个碱基对,分布在单个染色体和六个染色体外质粒(一个线性和五个圆形)。RNA-Seq分析显示2,665个基因显著失调(占检测到的基因总数的44%)。结果表明,其碳和能量代谢发生了深刻的重组,包括(1)利用空气成分的机制的激活;(ii)参与醛和醇代谢的各种脱氢酶,(iii)参与C2代谢、乙醛酸分流和TCA旁路途径的几种酶,以及编码CO2释放-脱羧酶的几种基因的下调。我们的研究结果表明,L13对低营养条件的适应策略是由一系列代谢事件的组合支持的,包括低代谢活性、C2和酮酸代谢的激活以及碳保守代谢程序的显示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Genetics
Current Genetics 生物-遗传学
CiteScore
6.00
自引率
0.00%
发文量
34
审稿时长
1 months
期刊介绍: Current Genetics publishes genetic, genomic, molecular and systems-level analysis of eukaryotic and prokaryotic microorganisms and cell organelles. All articles are peer-reviewed. The journal welcomes submissions employing any type of research approach, be it analytical (aiming at a better understanding), applied (aiming at practical applications), synthetic or theoretical. Current Genetics no longer accepts manuscripts describing the genome sequence of mitochondria/chloroplast of a small number of species. Manuscripts covering sequence comparisons and analyses that include a large number of species will still be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信