Christopher S Vennard, Samson Marvellous Oladeji, Herman O Sintim
{"title":"Inhibitors of Cyclic Dinucleotide Phosphodiesterases and Cyclic Oligonucleotide Ring Nucleases as Potential Drugs for Various Diseases.","authors":"Christopher S Vennard, Samson Marvellous Oladeji, Herman O Sintim","doi":"10.3390/cells14090663","DOIUrl":null,"url":null,"abstract":"<p><p>The phosphodiester linkage is found in DNA, RNA and many signaling molecules, such as cyclic mononucleotide, cyclic dinucleotides (CDNs) and cyclic oligonucleotides (cONs). Enzymes that cleave the phosphodiester linkage (nucleases and phosphodiesterases) play important roles in cell persistence and fitness and have therefore become targets for various diseased states. While various inhibitors have been developed for nucleases and cyclic mononucleotide phosphodiesterases, and some have become clinical successes, there is a paucity of inhibitors of the recently discovered phosphodiesterases or ring nucleases that cleave CDNs and cONs. Inhibitors of bacterial c-di-GMP or c-di-AMP phosphodiesterases have the potential to be used as anti-virulence compounds, while compounds that inhibit the degradation of 3',3'-cGAMP, cA<sub>3</sub>, cA<sub>4</sub>, cA<sub>6</sub> could serve as antibiotic adjuvants as the accumulation of these second messengers leads to bacterial abortive infection. In humans, 2'3'-cGAMP plays critical roles in antiviral and antitumor responses. ENPP1 (the 2'3'-cGAMP phosphodiesterase) or virally encoded cyclic dinucleotide phosphodiesterases, such as poxin, however, blunt this response. Inhibitors of ENPP1 or poxin-like enzymes have the potential to be used as anticancer and antiviral agents, respectively. This review summarizes efforts made towards the discovery and development of compounds that inhibit CDN phosphodiesterases and cON ring nucleases.</p>","PeriodicalId":9743,"journal":{"name":"Cells","volume":"14 9","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12072042/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cells14090663","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The phosphodiester linkage is found in DNA, RNA and many signaling molecules, such as cyclic mononucleotide, cyclic dinucleotides (CDNs) and cyclic oligonucleotides (cONs). Enzymes that cleave the phosphodiester linkage (nucleases and phosphodiesterases) play important roles in cell persistence and fitness and have therefore become targets for various diseased states. While various inhibitors have been developed for nucleases and cyclic mononucleotide phosphodiesterases, and some have become clinical successes, there is a paucity of inhibitors of the recently discovered phosphodiesterases or ring nucleases that cleave CDNs and cONs. Inhibitors of bacterial c-di-GMP or c-di-AMP phosphodiesterases have the potential to be used as anti-virulence compounds, while compounds that inhibit the degradation of 3',3'-cGAMP, cA3, cA4, cA6 could serve as antibiotic adjuvants as the accumulation of these second messengers leads to bacterial abortive infection. In humans, 2'3'-cGAMP plays critical roles in antiviral and antitumor responses. ENPP1 (the 2'3'-cGAMP phosphodiesterase) or virally encoded cyclic dinucleotide phosphodiesterases, such as poxin, however, blunt this response. Inhibitors of ENPP1 or poxin-like enzymes have the potential to be used as anticancer and antiviral agents, respectively. This review summarizes efforts made towards the discovery and development of compounds that inhibit CDN phosphodiesterases and cON ring nucleases.
CellsBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
9.90
自引率
5.00%
发文量
3472
审稿时长
16 days
期刊介绍:
Cells (ISSN 2073-4409) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.