Yen-Wei Chen, In Sook Ahn, Susanna Sue-Ming Wang, Sana Majid, Graciel Diamante, Ingrid Cely, Guanglin Zhang, Angelus Cabanayan, Sergey Komzyuk, Jack Bonnett, Douglas Arneson, Xia Yang
{"title":"Multitissue single-cell analysis reveals differential cellular and molecular sensitivity between fructose and high-fat high-sucrose diets.","authors":"Yen-Wei Chen, In Sook Ahn, Susanna Sue-Ming Wang, Sana Majid, Graciel Diamante, Ingrid Cely, Guanglin Zhang, Angelus Cabanayan, Sergey Komzyuk, Jack Bonnett, Douglas Arneson, Xia Yang","doi":"10.1016/j.celrep.2025.115690","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic syndrome (MetS), a conglomerate of dysregulated metabolic traits that vary between individuals, is partially driven by modern diets high in fat, sucrose, or fructose and their interactions with host genes in metabolic tissues. To elucidate the roles of individual tissues and cell types in diet-induced MetS, we performed single-cell RNA sequencing on the hypothalamus, liver, adipose tissue, and small intestine of mice fed high-fat high-sucrose (HFHS) or fructose diets. We found that hypothalamic neurons were sensitive to fructose, while adipose progenitor cells and macrophages were responsive to HFHS. Ligand-receptor analysis revealed lipid metabolism and inflammation networks among peripheral tissues driven by HFHS, while both diets stimulated synaptic remodeling within the hypothalamus. mt-Rnr2, a top responder to both diets, mitigated diet-induced MetS by stimulating thermogenesis. Our study demonstrates that HFHS and fructose diets have differential cell type and network targets but also share regulators such as mt-Rnr2 to affect MetS risk.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 5","pages":"115690"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115690","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic syndrome (MetS), a conglomerate of dysregulated metabolic traits that vary between individuals, is partially driven by modern diets high in fat, sucrose, or fructose and their interactions with host genes in metabolic tissues. To elucidate the roles of individual tissues and cell types in diet-induced MetS, we performed single-cell RNA sequencing on the hypothalamus, liver, adipose tissue, and small intestine of mice fed high-fat high-sucrose (HFHS) or fructose diets. We found that hypothalamic neurons were sensitive to fructose, while adipose progenitor cells and macrophages were responsive to HFHS. Ligand-receptor analysis revealed lipid metabolism and inflammation networks among peripheral tissues driven by HFHS, while both diets stimulated synaptic remodeling within the hypothalamus. mt-Rnr2, a top responder to both diets, mitigated diet-induced MetS by stimulating thermogenesis. Our study demonstrates that HFHS and fructose diets have differential cell type and network targets but also share regulators such as mt-Rnr2 to affect MetS risk.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.