{"title":"Advancing in vitro cell migration studies: a review of open-source analytical platforms for cancer and wound healing research.","authors":"Abhayraj S Joshi","doi":"10.1080/19336918.2025.2488116","DOIUrl":null,"url":null,"abstract":"<p><p>A single cell or cell population exhibits the fundamental phenomenon of cell migration during developmental processes or disease progression. Vast literature suggests that, <i>in vitro</i> 2-dimensional or 3-dimensional cell migration assay is one of the most commonly used assays in cancer, wound healing research, and developmental biology research. The data obtained from this assay are often analyzed using various proprietary or open-source programs. Proprietary software are costly and not always accessible to everyone. Whereas the open-source programs are free, easy to access, and user friendly. However, not all researchers are aware of these open-source programs. Despite the increasing availability of these programs, many researchers still rely on proprietary software, due to a lack of comparative analyses and practical guidance on their implementation. Hence, this review aims to provide insights into these open-source tools and serves as a practical guide to both biologists and computational researchers for their specific analytical needs.</p>","PeriodicalId":9680,"journal":{"name":"Cell Adhesion & Migration","volume":"19 1","pages":"2488116"},"PeriodicalIF":3.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006941/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Adhesion & Migration","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2025.2488116","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A single cell or cell population exhibits the fundamental phenomenon of cell migration during developmental processes or disease progression. Vast literature suggests that, in vitro 2-dimensional or 3-dimensional cell migration assay is one of the most commonly used assays in cancer, wound healing research, and developmental biology research. The data obtained from this assay are often analyzed using various proprietary or open-source programs. Proprietary software are costly and not always accessible to everyone. Whereas the open-source programs are free, easy to access, and user friendly. However, not all researchers are aware of these open-source programs. Despite the increasing availability of these programs, many researchers still rely on proprietary software, due to a lack of comparative analyses and practical guidance on their implementation. Hence, this review aims to provide insights into these open-source tools and serves as a practical guide to both biologists and computational researchers for their specific analytical needs.
期刊介绍:
Cell Adhesion & Migration is a multi-disciplinary, peer reviewed open access journal that focuses on the biological or pathological implications of cell-cell and cell-microenvironment interactions. The main focus of this journal is fundamental science. The journal strives to serve a broad readership by regularly publishing review articles covering specific disciplines within the field, and by publishing focused issues that provide an overview on specific topics of interest within the field.
Cell Adhesion & Migration publishes relevant and timely original research, as well as authoritative overviews, commentaries, and perspectives, providing context for the work presented in Cell Adhesion & Migration and for key results published elsewhere. Original research papers may cover all topics important in the field of cell-cell and cell-matrix interactions. Cell Adhesion & Migration also publishes articles related to cell biomechanics, biomaterial, and development of related imaging technologies.