Constructed transferrin receptor-targeted liposome for the delivery of fluvoxamine to improve prognosis in a traumatic brain injury mouse model.

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Delivery Pub Date : 2025-12-01 Epub Date: 2025-04-15 DOI:10.1080/10717544.2025.2486840
Liang Mi, Jiangyuan Yuan, Yuxing Jiang, Yuqian Hu, Chuanxiang Lv, Yongqiang Xu, Mingqi Liu, Tao Liu, Xuanhui Liu, Jinhao Huang, Rongcai Jiang, Wei Quan
{"title":"Constructed transferrin receptor-targeted liposome for the delivery of fluvoxamine to improve prognosis in a traumatic brain injury mouse model.","authors":"Liang Mi, Jiangyuan Yuan, Yuxing Jiang, Yuqian Hu, Chuanxiang Lv, Yongqiang Xu, Mingqi Liu, Tao Liu, Xuanhui Liu, Jinhao Huang, Rongcai Jiang, Wei Quan","doi":"10.1080/10717544.2025.2486840","DOIUrl":null,"url":null,"abstract":"<p><p>The dysregulation of blood-brain barrier (BBB) activates pathological mechanisms such as neuroinflammation after traumatic brain injury (TBI), and glymphatic system dysfunction accelerates toxic waste accumulation after TBI. It is essential to find an effective way to inhibit inflammation and repair BBB and glymphatic system after TBI; however, effective and lasting drug therapy remains challenging because BBB severely prevents drugs from being delivered to central nervous system. Transferrin receptors (TfRs) are mainly expressed on brain capillary endothelial cells. Here, we report a TfR-targeted nanomedicine for TBI treatment by penetrating BBB and delivering fluvoxamine (Flv). The TfR-targeted polypeptide liposome loaded with Flv (TPL-Flv) implements cell targeting ability on human umbilical vein endothelial cells (HUVECs) <i>in vitro</i> detected by flow cytometry, and drug safety was proved through cell viability analysis and blood routine and biochemistry analysis. Afterwards, we established a controlled cortical impact model to explore TPL-Flv administration effects on TBI mice. We confirmed that TPL-Flv could stimulate CXCR4/SDF-1 signaling pathway, activate Treg cells, and inhibit inflammation after TBI. TPL-Flv treatment also alleviated BBB disruption and restored aquaporin-4 (AQP4) polarization, as well as reversed glymphatic dysfunction. Furthermore, TPL-Flv accomplished remarkable improvement of motor and cognitive functions. These findings demonstrate that TPL-Flv can effectively cross BBB and achieve drug delivery to cerebral tissue, validating its potential to improve therapeutic outcomes for TBI.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"32 1","pages":"2486840"},"PeriodicalIF":6.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12001850/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2025.2486840","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The dysregulation of blood-brain barrier (BBB) activates pathological mechanisms such as neuroinflammation after traumatic brain injury (TBI), and glymphatic system dysfunction accelerates toxic waste accumulation after TBI. It is essential to find an effective way to inhibit inflammation and repair BBB and glymphatic system after TBI; however, effective and lasting drug therapy remains challenging because BBB severely prevents drugs from being delivered to central nervous system. Transferrin receptors (TfRs) are mainly expressed on brain capillary endothelial cells. Here, we report a TfR-targeted nanomedicine for TBI treatment by penetrating BBB and delivering fluvoxamine (Flv). The TfR-targeted polypeptide liposome loaded with Flv (TPL-Flv) implements cell targeting ability on human umbilical vein endothelial cells (HUVECs) in vitro detected by flow cytometry, and drug safety was proved through cell viability analysis and blood routine and biochemistry analysis. Afterwards, we established a controlled cortical impact model to explore TPL-Flv administration effects on TBI mice. We confirmed that TPL-Flv could stimulate CXCR4/SDF-1 signaling pathway, activate Treg cells, and inhibit inflammation after TBI. TPL-Flv treatment also alleviated BBB disruption and restored aquaporin-4 (AQP4) polarization, as well as reversed glymphatic dysfunction. Furthermore, TPL-Flv accomplished remarkable improvement of motor and cognitive functions. These findings demonstrate that TPL-Flv can effectively cross BBB and achieve drug delivery to cerebral tissue, validating its potential to improve therapeutic outcomes for TBI.

构建转铁蛋白受体靶向脂质体用于输送氟伏沙明以改善创伤性脑损伤小鼠模型的预后。
血脑屏障(BBB)失调可激活创伤性脑损伤(TBI)后神经炎症等病理机制,淋巴系统功能障碍可加速TBI后毒性废物的积累。寻找有效的方法抑制脑外伤后的炎症反应,修复血脑屏障和淋巴系统是十分必要的;然而,有效和持久的药物治疗仍然具有挑战性,因为血脑屏障严重阻碍药物传递到中枢神经系统。转铁蛋白受体主要在脑毛细血管内皮细胞上表达。在这里,我们报道了一种靶向tfr的纳米药物,通过穿透血脑屏障并递送氟伏沙明(Flv)来治疗TBI。通过流式细胞术检测tfr靶向多肽脂质体(TPL-Flv)对体外人脐静脉内皮细胞(HUVECs)具有细胞靶向能力,并通过细胞活力分析、血常规及生化分析证明其药物安全性。随后,我们建立了对照皮质冲击模型,探讨TPL-Flv给药对TBI小鼠的影响。我们证实TPL-Flv可以刺激CXCR4/SDF-1信号通路,激活Treg细胞,抑制TBI后的炎症。TPL-Flv治疗还可以缓解血脑屏障破坏,恢复水通道蛋白-4 (AQP4)极化,并逆转淋巴功能障碍。此外,TPL-Flv还能显著改善运动和认知功能。这些发现表明,TPL-Flv可以有效地穿过血脑屏障,实现药物递送到脑组织,验证了其改善TBI治疗结果的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信