Agraja P S, Sreelekshmi P J, Devika V, Devu C, Rejithamol R
{"title":"Molecular Imprinted Polymer Decorated Electrochemical Sensors for Diabetes Biomarkers: A Critical Review.","authors":"Agraja P S, Sreelekshmi P J, Devika V, Devu C, Rejithamol R","doi":"10.1080/10408347.2025.2492385","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes is a chronic illness marked by high blood sugar or hyperglycemia, which can be caused by deficiencies in the action or secretion of insulin, or both. A prolonged period of elevated blood glucose levels can cause several tissues to malfunction. To avoid or postpone the onset of problems associated with diabetes, early diagnosis, and effective care are essential. Biomarkers and biosensors have become potential tools for monitoring and managing diabetes. Glucose, glycated hemoglobin, and other relevant biomarkers of diabetes can be detected using various biosensors, including enzymatic, electrochemical, and optical types. The molecular imprinting technique is an emerging electroanalytical method, that creates cavities in the polymer matrix with an affinity for a selected template molecule, known as molecularly imprinted polymer (MIP). Typically, the procedure involves the polymerization of monomers in the presence of a template molecule, which is then removed to leave behind imprinting sites. These polymers have been employed in molecular sensors, chemical separations, and catalysis due to their affinity for the original molecule. With special attention to their mechanisms of action, clinical applications, limitations, and the potential of emerging technologies, such as wearables and nano-biosensors, these can be used for continuous and real-time diabetes monitoring. This critical review focuses on the role of nanomaterials and conducting polymer-decorated molecularly imprinted sensors for tracking diabetes biomarkers. Additionally, this paper discusses the difficulties in developing and implementing biosensors, including selectivity, sensitivity, and real-time monitoring of glucose levels.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-18"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2025.2492385","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes is a chronic illness marked by high blood sugar or hyperglycemia, which can be caused by deficiencies in the action or secretion of insulin, or both. A prolonged period of elevated blood glucose levels can cause several tissues to malfunction. To avoid or postpone the onset of problems associated with diabetes, early diagnosis, and effective care are essential. Biomarkers and biosensors have become potential tools for monitoring and managing diabetes. Glucose, glycated hemoglobin, and other relevant biomarkers of diabetes can be detected using various biosensors, including enzymatic, electrochemical, and optical types. The molecular imprinting technique is an emerging electroanalytical method, that creates cavities in the polymer matrix with an affinity for a selected template molecule, known as molecularly imprinted polymer (MIP). Typically, the procedure involves the polymerization of monomers in the presence of a template molecule, which is then removed to leave behind imprinting sites. These polymers have been employed in molecular sensors, chemical separations, and catalysis due to their affinity for the original molecule. With special attention to their mechanisms of action, clinical applications, limitations, and the potential of emerging technologies, such as wearables and nano-biosensors, these can be used for continuous and real-time diabetes monitoring. This critical review focuses on the role of nanomaterials and conducting polymer-decorated molecularly imprinted sensors for tracking diabetes biomarkers. Additionally, this paper discusses the difficulties in developing and implementing biosensors, including selectivity, sensitivity, and real-time monitoring of glucose levels.
期刊介绍:
Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area.
This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following:
· chemical analysis;
· instrumentation;
· chemometrics;
· analytical biochemistry;
· medicinal analysis;
· forensics;
· environmental sciences;
· applied physics;
· and material science.