Biochemical validation for the therapeutic use of Plumeria rubra in coagulation disorders: a study combining in silico, in vitro, and in vivo approaches.
Imran Ahmad Khan, Muhammad Anwar, Sarmad Frogh Arshad, Athar Hussain, Muhammad Usman, Mohammed Nadeem Ansari, Hasan Junaid Arshad, Asma Shah Rukh, Qurat Ul Ain, Maliha Khalid Khan
{"title":"Biochemical validation for the therapeutic use of Plumeria rubra in coagulation disorders: a study combining in silico, in vitro, and in vivo approaches.","authors":"Imran Ahmad Khan, Muhammad Anwar, Sarmad Frogh Arshad, Athar Hussain, Muhammad Usman, Mohammed Nadeem Ansari, Hasan Junaid Arshad, Asma Shah Rukh, Qurat Ul Ain, Maliha Khalid Khan","doi":"10.1007/s00709-025-02055-z","DOIUrl":null,"url":null,"abstract":"<p><p>Local healers in South Asia use Plumeria rubra Linn. leaves to treat various coagulation disorders in animals and humans. This study (in silico, in vitro, and in vivo) aimed to explore the pharmacological basis for the possible thrombolytic and anticlotting properties of the leaf extract of P. rubra. Phytoconstituents of P. rubra were dock against coagulation proteins: prothrombin, thromboplastin, and fibrin using in silico approach. Phytochemical screening, HPLC, and antioxidant, anticoagulant, and thrombolytic potential were evaluated using in vitro approach. Healthy male rabbits were divided into five groups (six rabbits each). Groups 1-3 were treated with aqueous-methanolic (30:70%) extract of P. rubra at 200, 300, and 600 mg/mL respectively groups in contrast to the positive and negative control groups. Thrombolytic activity was assessed at doses of 200, 300, and 600 µg/mL in comparison with standard urokinase (600 µg/kg). Platelet adhesion was evaluated at a dose of 200, 300, and 600 µg/mL against adrenaline (2 µM) and acute oral dose toxicity was assessed using in vivo approach. In silico study resulted in an excellent binding affinity and showed significant interaction with coagulation proteins. Phytochemical analysis showed a range of phytochemical classes: alkaloids, tannins, flavonoids, glycosides, anthraquinones, and saponins. HPLC analysis confirmed the phytoconstituents plumericin, rutin, kaempferol, and isoquercetin already reported for coagulation disorders. P. rubra showed excellent antioxidant potential and was assessed using DPPH, NO, and SOD assays. The activated partial thromboplastin time (APTT), bleeding time (BT), prothrombin time (PT), and clotting time (CT) all went up with increasing doses in the aqueous-methanolic extract (p ≤ 0.05). Comparing the plant extract to urokinase, the plant extract demonstrated considerable (p ≤ 0.05) clot lysis. Additionally, it dose-dependently delayed the ADR-induced platelet adhesion dose-dependently (p ≤ 0.05). The outcome of this study justifies its therapeutic utility in coagulation disorders and can be used as an alternative medicine.</p>","PeriodicalId":20731,"journal":{"name":"Protoplasma","volume":" ","pages":"1319-1336"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protoplasma","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00709-025-02055-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Local healers in South Asia use Plumeria rubra Linn. leaves to treat various coagulation disorders in animals and humans. This study (in silico, in vitro, and in vivo) aimed to explore the pharmacological basis for the possible thrombolytic and anticlotting properties of the leaf extract of P. rubra. Phytoconstituents of P. rubra were dock against coagulation proteins: prothrombin, thromboplastin, and fibrin using in silico approach. Phytochemical screening, HPLC, and antioxidant, anticoagulant, and thrombolytic potential were evaluated using in vitro approach. Healthy male rabbits were divided into five groups (six rabbits each). Groups 1-3 were treated with aqueous-methanolic (30:70%) extract of P. rubra at 200, 300, and 600 mg/mL respectively groups in contrast to the positive and negative control groups. Thrombolytic activity was assessed at doses of 200, 300, and 600 µg/mL in comparison with standard urokinase (600 µg/kg). Platelet adhesion was evaluated at a dose of 200, 300, and 600 µg/mL against adrenaline (2 µM) and acute oral dose toxicity was assessed using in vivo approach. In silico study resulted in an excellent binding affinity and showed significant interaction with coagulation proteins. Phytochemical analysis showed a range of phytochemical classes: alkaloids, tannins, flavonoids, glycosides, anthraquinones, and saponins. HPLC analysis confirmed the phytoconstituents plumericin, rutin, kaempferol, and isoquercetin already reported for coagulation disorders. P. rubra showed excellent antioxidant potential and was assessed using DPPH, NO, and SOD assays. The activated partial thromboplastin time (APTT), bleeding time (BT), prothrombin time (PT), and clotting time (CT) all went up with increasing doses in the aqueous-methanolic extract (p ≤ 0.05). Comparing the plant extract to urokinase, the plant extract demonstrated considerable (p ≤ 0.05) clot lysis. Additionally, it dose-dependently delayed the ADR-induced platelet adhesion dose-dependently (p ≤ 0.05). The outcome of this study justifies its therapeutic utility in coagulation disorders and can be used as an alternative medicine.
期刊介绍:
Protoplasma publishes original papers, short communications and review articles which are of interest to cell biology in all its scientific and applied aspects. We seek contributions dealing with plants and animals but also prokaryotes, protists and fungi, from the following fields:
cell biology of both single and multicellular organisms
molecular cytology
the cell cycle
membrane biology including biogenesis, dynamics, energetics and electrophysiology
inter- and intracellular transport
the cytoskeleton
organelles
experimental and quantitative ultrastructure
cyto- and histochemistry
Further, conceptual contributions such as new models or discoveries at the cutting edge of cell biology research will be published under the headings "New Ideas in Cell Biology".