{"title":"Stochastic Entropy Production for Classical and Quantum Dynamical Systems with Restricted Diffusion.","authors":"Jonathan Dexter, Ian J Ford","doi":"10.3390/e27040383","DOIUrl":null,"url":null,"abstract":"<p><p>Modeling the evolution of a system using stochastic dynamics typically implies increasing subjective uncertainty in the adopted state of the system and its environment as time progresses, and stochastic entropy production has been developed as a measure of this change. In some situations, the evolution of stochastic entropy production can be described using an Itô process, but mathematical difficulties can emerge if diffusion in the system phase space happens to be restricted to a subspace of a lower dimension. This situation can arise if there are constants of the motion, for example, or more generally when there are functions of the coordinates that evolve without noise. More simply, difficulties can emerge if there are more coordinates than there are independent noises. We show how the problem of computing the stochastic entropy production in such a situation can be overcome. We illustrate the approach using a simple case of diffusion on an ellipse. We go on to consider an open three-level quantum system modeled within a framework of Markovian quantum state diffusion. We show how a nonequilibrium stationary state of the system, with a constant mean rate of stochastic entropy production, can be established under suitable environmental couplings.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025737/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040383","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Modeling the evolution of a system using stochastic dynamics typically implies increasing subjective uncertainty in the adopted state of the system and its environment as time progresses, and stochastic entropy production has been developed as a measure of this change. In some situations, the evolution of stochastic entropy production can be described using an Itô process, but mathematical difficulties can emerge if diffusion in the system phase space happens to be restricted to a subspace of a lower dimension. This situation can arise if there are constants of the motion, for example, or more generally when there are functions of the coordinates that evolve without noise. More simply, difficulties can emerge if there are more coordinates than there are independent noises. We show how the problem of computing the stochastic entropy production in such a situation can be overcome. We illustrate the approach using a simple case of diffusion on an ellipse. We go on to consider an open three-level quantum system modeled within a framework of Markovian quantum state diffusion. We show how a nonequilibrium stationary state of the system, with a constant mean rate of stochastic entropy production, can be established under suitable environmental couplings.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.