{"title":"The Size Effect on the Phase Transition and Dielectric Properties of Poly(vinylidene Fluoride) Ferroelectric Polymers.","authors":"Xiaofang Zhao, Min Yu, Xining Zhang","doi":"10.3390/polym17091286","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-scale characterization techniques have been employed to analyze the size effect of microstructure on the phase transition behavior and dielectric properties of poly(vinylidene fluoride) (PVDF) films. The results show that oriented amorphous fraction layers are prone to form in the vicinity of the grain boundaries of nano-grained films, while the interfacial polarization and electrostriction effect play a major role. Polar nano-regions are prone to form in micro-grained films, and the maximum fraction of polar crystalline phase and maximal dielectric constant can be achieved due to the balance between the intrinsic effect and extrinsic effect of the material. On the contrary, the extrinsic effect corresponding to interfacial charges greatly influences the phase transition behavior between beta and alpha phases for coarse-grained PVDF films, while the dielectric properties are mainly influenced by the intrinsic electrostatic field and van der Waal interaction of the material. Hence, the dielectric behavior of nano-grained films can be adjusted by the copolymerization technique, that of micro-grained films can be adjusted by both the copolymerization technique and the controlling of microstructure morphology, and that of coarse-grained films can be adjusted by the doping technique.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 9","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12074403/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17091286","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-scale characterization techniques have been employed to analyze the size effect of microstructure on the phase transition behavior and dielectric properties of poly(vinylidene fluoride) (PVDF) films. The results show that oriented amorphous fraction layers are prone to form in the vicinity of the grain boundaries of nano-grained films, while the interfacial polarization and electrostriction effect play a major role. Polar nano-regions are prone to form in micro-grained films, and the maximum fraction of polar crystalline phase and maximal dielectric constant can be achieved due to the balance between the intrinsic effect and extrinsic effect of the material. On the contrary, the extrinsic effect corresponding to interfacial charges greatly influences the phase transition behavior between beta and alpha phases for coarse-grained PVDF films, while the dielectric properties are mainly influenced by the intrinsic electrostatic field and van der Waal interaction of the material. Hence, the dielectric behavior of nano-grained films can be adjusted by the copolymerization technique, that of micro-grained films can be adjusted by both the copolymerization technique and the controlling of microstructure morphology, and that of coarse-grained films can be adjusted by the doping technique.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.