Sven Daboss, Nikolas Franke, Beatrice Fraboni, Christine Kranz, Tobias Cramer
{"title":"Modulated electrochemical force microscopy: Investigation of sodium-ion transport at hard carbon composite anodes.","authors":"Sven Daboss, Nikolas Franke, Beatrice Fraboni, Christine Kranz, Tobias Cramer","doi":"10.1111/jmi.13417","DOIUrl":null,"url":null,"abstract":"<p><p>For sodium (Na)-ion batteries (SIBs), the next generation of sustainable batteries, hard carbon (HC) composite electrodes are the most used anodes. Here, we demonstrate the potential of modulated electrochemical force microscopy (mec-AFM) to investigate electrochemical strain due to ion insertion at the electrolyte/electrode interface. HC composite anodes have a complex, multiphase structure, which include the HC particles, conductive carbon nanoparticles (carbon black) and the binder. To address the effect of the composite material on the sodium-ion transport, we employ mec-AFM. A HC composite anode was embedded in an epoxy-polymer matrix and was polished to expose a micro-sized area that enabled high-frequency modulation of the ion transport. We analyse the influence of the modulation on interfacial forces and its role in generating electrochemical strain in the composite anode. Multichannel mec-AFM imaging at varying electrode potentials revealed that the observed electrochemical strain predominantly occurred in the softer binder matrix rather than in the HC microparticles. Our findings underscore the significance of ionic transport pathways through the binder matrix and establish mec-AFM as a novel AFM-derived technique for visualising ion dynamics at battery interfaces.</p>","PeriodicalId":16484,"journal":{"name":"Journal of microscopy","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/jmi.13417","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
For sodium (Na)-ion batteries (SIBs), the next generation of sustainable batteries, hard carbon (HC) composite electrodes are the most used anodes. Here, we demonstrate the potential of modulated electrochemical force microscopy (mec-AFM) to investigate electrochemical strain due to ion insertion at the electrolyte/electrode interface. HC composite anodes have a complex, multiphase structure, which include the HC particles, conductive carbon nanoparticles (carbon black) and the binder. To address the effect of the composite material on the sodium-ion transport, we employ mec-AFM. A HC composite anode was embedded in an epoxy-polymer matrix and was polished to expose a micro-sized area that enabled high-frequency modulation of the ion transport. We analyse the influence of the modulation on interfacial forces and its role in generating electrochemical strain in the composite anode. Multichannel mec-AFM imaging at varying electrode potentials revealed that the observed electrochemical strain predominantly occurred in the softer binder matrix rather than in the HC microparticles. Our findings underscore the significance of ionic transport pathways through the binder matrix and establish mec-AFM as a novel AFM-derived technique for visualising ion dynamics at battery interfaces.
期刊介绍:
The Journal of Microscopy is the oldest journal dedicated to the science of microscopy and the only peer-reviewed publication of the Royal Microscopical Society. It publishes papers that report on the very latest developments in microscopy such as advances in microscopy techniques or novel areas of application. The Journal does not seek to publish routine applications of microscopy or specimen preparation even though the submission may otherwise have a high scientific merit.
The scope covers research in the physical and biological sciences and covers imaging methods using light, electrons, X-rays and other radiations as well as atomic force and near field techniques. Interdisciplinary research is welcome. Papers pertaining to microscopy are also welcomed on optical theory, spectroscopy, novel specimen preparation and manipulation methods and image recording, processing and analysis including dynamic analysis of living specimens.
Publication types include full papers, hot topic fast tracked communications and review articles. Authors considering submitting a review article should contact the editorial office first.