{"title":"Temperature-dependent microfluidic impedance spectroscopy for non-invasive biofluid characterization.","authors":"Tom Wade, Sohini Kar-Narayan","doi":"10.1063/5.0255847","DOIUrl":null,"url":null,"abstract":"<p><p>Remote health monitoring has the potential to enable individuals to take control of their own health and well-being and to facilitate a transition toward preventative and personalized healthcare. Sweat can be sampled non-invasively and contains a wealth of information about the metabolic state of an individual, making it an excellent candidate for remote health monitoring. An accurate, rapid, and low-cost biofluid characterization technique is required to enable the widespread use of remote health monitoring. We previously introduced microfluidic impedance spectroscopy for the detection of electrolyte concentration in fluids, whereby a novel device architecture, measurement method, and analysis technique were presented for the characterization of cationic species. The purely electrical nature of this measurement technique removes the intermediate steps inherent in common rival technologies such as optical and electrochemical sensing, offering a range of advantages. In this work, we investigate the effect of temperature on microfluidic impedance spectroscopy of ionic species commonly present in biofluids. We find that the impedance spectra and concentration determination are temperature-dependent; remote health monitoring devices must be calibrated appropriately as they are likely to experience temperature fluctuations. Importantly, we demonstrate the ability of the method to measure the concentration of anionic species alongside that of cationic species, enabling the detection of chloride and lactate, which are useful biomarkers for hydration, cystic fibrosis, fatigue, sepsis, and hypoperfusion. We show that the presence of neutral species does not impair accurate determination of ionic concentration, thus, demonstrating the suitability of microfluidic impedance spectroscopy for non-invasive biofluid characterization.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"19 3","pages":"034101"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048175/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0255847","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Remote health monitoring has the potential to enable individuals to take control of their own health and well-being and to facilitate a transition toward preventative and personalized healthcare. Sweat can be sampled non-invasively and contains a wealth of information about the metabolic state of an individual, making it an excellent candidate for remote health monitoring. An accurate, rapid, and low-cost biofluid characterization technique is required to enable the widespread use of remote health monitoring. We previously introduced microfluidic impedance spectroscopy for the detection of electrolyte concentration in fluids, whereby a novel device architecture, measurement method, and analysis technique were presented for the characterization of cationic species. The purely electrical nature of this measurement technique removes the intermediate steps inherent in common rival technologies such as optical and electrochemical sensing, offering a range of advantages. In this work, we investigate the effect of temperature on microfluidic impedance spectroscopy of ionic species commonly present in biofluids. We find that the impedance spectra and concentration determination are temperature-dependent; remote health monitoring devices must be calibrated appropriately as they are likely to experience temperature fluctuations. Importantly, we demonstrate the ability of the method to measure the concentration of anionic species alongside that of cationic species, enabling the detection of chloride and lactate, which are useful biomarkers for hydration, cystic fibrosis, fatigue, sepsis, and hypoperfusion. We show that the presence of neutral species does not impair accurate determination of ionic concentration, thus, demonstrating the suitability of microfluidic impedance spectroscopy for non-invasive biofluid characterization.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...