Temperature-dependent microfluidic impedance spectroscopy for non-invasive biofluid characterization.

IF 2.6 4区 工程技术 Q2 BIOCHEMICAL RESEARCH METHODS
Biomicrofluidics Pub Date : 2025-05-01 DOI:10.1063/5.0255847
Tom Wade, Sohini Kar-Narayan
{"title":"Temperature-dependent microfluidic impedance spectroscopy for non-invasive biofluid characterization.","authors":"Tom Wade, Sohini Kar-Narayan","doi":"10.1063/5.0255847","DOIUrl":null,"url":null,"abstract":"<p><p>Remote health monitoring has the potential to enable individuals to take control of their own health and well-being and to facilitate a transition toward preventative and personalized healthcare. Sweat can be sampled non-invasively and contains a wealth of information about the metabolic state of an individual, making it an excellent candidate for remote health monitoring. An accurate, rapid, and low-cost biofluid characterization technique is required to enable the widespread use of remote health monitoring. We previously introduced microfluidic impedance spectroscopy for the detection of electrolyte concentration in fluids, whereby a novel device architecture, measurement method, and analysis technique were presented for the characterization of cationic species. The purely electrical nature of this measurement technique removes the intermediate steps inherent in common rival technologies such as optical and electrochemical sensing, offering a range of advantages. In this work, we investigate the effect of temperature on microfluidic impedance spectroscopy of ionic species commonly present in biofluids. We find that the impedance spectra and concentration determination are temperature-dependent; remote health monitoring devices must be calibrated appropriately as they are likely to experience temperature fluctuations. Importantly, we demonstrate the ability of the method to measure the concentration of anionic species alongside that of cationic species, enabling the detection of chloride and lactate, which are useful biomarkers for hydration, cystic fibrosis, fatigue, sepsis, and hypoperfusion. We show that the presence of neutral species does not impair accurate determination of ionic concentration, thus, demonstrating the suitability of microfluidic impedance spectroscopy for non-invasive biofluid characterization.</p>","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"19 3","pages":"034101"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12048175/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0255847","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Remote health monitoring has the potential to enable individuals to take control of their own health and well-being and to facilitate a transition toward preventative and personalized healthcare. Sweat can be sampled non-invasively and contains a wealth of information about the metabolic state of an individual, making it an excellent candidate for remote health monitoring. An accurate, rapid, and low-cost biofluid characterization technique is required to enable the widespread use of remote health monitoring. We previously introduced microfluidic impedance spectroscopy for the detection of electrolyte concentration in fluids, whereby a novel device architecture, measurement method, and analysis technique were presented for the characterization of cationic species. The purely electrical nature of this measurement technique removes the intermediate steps inherent in common rival technologies such as optical and electrochemical sensing, offering a range of advantages. In this work, we investigate the effect of temperature on microfluidic impedance spectroscopy of ionic species commonly present in biofluids. We find that the impedance spectra and concentration determination are temperature-dependent; remote health monitoring devices must be calibrated appropriately as they are likely to experience temperature fluctuations. Importantly, we demonstrate the ability of the method to measure the concentration of anionic species alongside that of cationic species, enabling the detection of chloride and lactate, which are useful biomarkers for hydration, cystic fibrosis, fatigue, sepsis, and hypoperfusion. We show that the presence of neutral species does not impair accurate determination of ionic concentration, thus, demonstrating the suitability of microfluidic impedance spectroscopy for non-invasive biofluid characterization.

非侵入性生物流体表征的温度相关微流体阻抗谱。
远程健康监测有可能使个人能够控制自己的健康和福祉,并促进向预防性和个性化医疗保健的过渡。可以对汗液进行非侵入性采样,并包含有关个人代谢状态的丰富信息,使其成为远程健康监测的绝佳候选者。为了实现远程健康监测的广泛应用,需要一种准确、快速、低成本的生物流体表征技术。我们之前介绍了用于检测流体中电解质浓度的微流体阻抗谱,由此提出了一种新的设备结构,测量方法和分析技术,用于表征阳离子物种。这种测量技术的纯电学性质消除了光学和电化学传感等常见竞争技术固有的中间步骤,提供了一系列优势。在这项工作中,我们研究了温度对生物流体中常见的离子种类的微流体阻抗谱的影响。我们发现阻抗谱和浓度测定与温度有关;远程健康监测设备必须进行适当校准,因为它们可能会经历温度波动。重要的是,我们证明了该方法能够测量阴离子物种的浓度和阳离子物种的浓度,从而能够检测氯化物和乳酸盐,这是水合作用、囊性纤维化、疲劳、败血症和低灌注的有用生物标志物。我们表明,中性物质的存在不会影响离子浓度的准确测定,因此,证明了微流体阻抗谱用于非侵入性生物流体表征的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomicrofluidics
Biomicrofluidics 生物-纳米科技
CiteScore
5.80
自引率
3.10%
发文量
68
审稿时长
1.3 months
期刊介绍: Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications. BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics. Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary) Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification) Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation) Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles) Cell culture and analysis(single cell assays, stimuli response, stem cell transfection) Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays) Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers) Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信