Identification of a novel tetrahydroxynaphthalene derivative by chemical screening with ferroptosis inhibitory activity and promising therapeutic potential.
{"title":"Identification of a novel tetrahydroxynaphthalene derivative by chemical screening with ferroptosis inhibitory activity and promising therapeutic potential.","authors":"Takujiro Homma, Chihiro Tada, Moeka Yamauchi, Yuto Matsumoto, Shinji Matsunaga, Shuji Akai, Hiroaki Gotoh, Shuhei Tomita","doi":"10.1080/10715762.2025.2497033","DOIUrl":null,"url":null,"abstract":"<p><p>Hydroxyl radicals produced by the iron-mediated Fenton reaction are highly reactive, increase lipid peroxide levels, and damage cell membranes, resulting in ferroptosis, an iron-dependent form of cell death. In recent years, the role of ferroptosis in various pathological conditions has garnered interest. Because it is responsible for oxidative stress-induced organ damage, especially cell death associated with ischemia-reperfusion injury and neurological disorders, the inhibition of ferroptosis may ameliorate organ damage. Through a screen of a unique chemical compound library from Osaka University, we identified several structurally distinct compounds that were highly protective against ferroptosis <i>in vitro</i>. Notably, compound #562, which is a tetrahydroxynaphthalene derivative, exhibited a remarkable ability to fully rescue cells from ferroptosis at low concentrations (0.1 µM). A computational analysis revealed its structural uniqueness and high drug-likeness score, indicating its clinical potential. Along with its enhanced efficacy, this suggests that compound #562 may provide alternative modes of action or improved therapeutic potential for ferroptosis-related diseases.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":" ","pages":"321-331"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2025.2497033","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hydroxyl radicals produced by the iron-mediated Fenton reaction are highly reactive, increase lipid peroxide levels, and damage cell membranes, resulting in ferroptosis, an iron-dependent form of cell death. In recent years, the role of ferroptosis in various pathological conditions has garnered interest. Because it is responsible for oxidative stress-induced organ damage, especially cell death associated with ischemia-reperfusion injury and neurological disorders, the inhibition of ferroptosis may ameliorate organ damage. Through a screen of a unique chemical compound library from Osaka University, we identified several structurally distinct compounds that were highly protective against ferroptosis in vitro. Notably, compound #562, which is a tetrahydroxynaphthalene derivative, exhibited a remarkable ability to fully rescue cells from ferroptosis at low concentrations (0.1 µM). A computational analysis revealed its structural uniqueness and high drug-likeness score, indicating its clinical potential. Along with its enhanced efficacy, this suggests that compound #562 may provide alternative modes of action or improved therapeutic potential for ferroptosis-related diseases.
期刊介绍:
Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.