Lipoproteins predicting coronary lesion complexity in premature coronary artery disease: a supervised machine learning approach.

IF 2.8 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Frontiers in Cardiovascular Medicine Pub Date : 2025-04-24 eCollection Date: 2025-01-01 DOI:10.3389/fcvm.2025.1470500
Marta Marcinkowska, Agnieszka Kuchta, Petra Małgorzata Grešner, Tomasz Figatowski, Piotr Kasprzyk, Radosław Targoński, Wojciech Sobiczewski, Miłosz Jaguszewski, Marcin Fijałkowski, Marcin Gruchała, Agnieszka Mickiewicz
{"title":"Lipoproteins predicting coronary lesion complexity in premature coronary artery disease: a supervised machine learning approach.","authors":"Marta Marcinkowska, Agnieszka Kuchta, Petra Małgorzata Grešner, Tomasz Figatowski, Piotr Kasprzyk, Radosław Targoński, Wojciech Sobiczewski, Miłosz Jaguszewski, Marcin Fijałkowski, Marcin Gruchała, Agnieszka Mickiewicz","doi":"10.3389/fcvm.2025.1470500","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>We aimed to assess the usefulness of lipoprotein(a) [Lp(a)] and LDL-C levels as potential predictors of coronary lesions' complexity in patients with premature coronary artery disease (pCAD).</p><p><strong>Methods: </strong>This study enrolled 162 consecutive patients with pCAD undergoing coronary angiography. The SYNTAX score (SS) was used to assess coronary lesions' complexity. Linear discriminant analysis (LDA) was employed to construct a multivariate classification model enabling the prediction of coronary lesions' complexity in SS.</p><p><strong>Results: </strong>The Lp(a) levels among patients with SS ≥ 23 and with SS 1-22 were significantly higher than those with SS = 0 (<i>p</i> = 0.021 and <i>p</i> = 0.027, respectively). The cut-off point for the Lp(a) level of 63.5 mg/dl discriminated subjects with SS ≥ 23 from those with SS ≤ 22 (sensitivity 0.546, specificity 0.780; AUC 0.620; <i>p</i> = 0.027). An LDA-based model involving the Lp(a) level, age, sex and LDL-C provided improved discrimination performance (sensitivity 0.727, specificity 0.733, AUC 0.800; <i>p</i> = 0.0001).</p><p><strong>Conclusions: </strong>Lp(a) levels in pCAD patients are associated with the advancement of coronary artery lesions in SS patients. An Lp(a) level of 63.5 mg/dl can be the cut-off point for the identification of subjects with SS ≥ 23. LDA-based modelling using Lp(a), LDL-C, age and gender may be an applicable tool for the preliminary identification of patients at risk of more complex coronary artery lesions.</p>","PeriodicalId":12414,"journal":{"name":"Frontiers in Cardiovascular Medicine","volume":"12 ","pages":"1470500"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058860/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cardiovascular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcvm.2025.1470500","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: We aimed to assess the usefulness of lipoprotein(a) [Lp(a)] and LDL-C levels as potential predictors of coronary lesions' complexity in patients with premature coronary artery disease (pCAD).

Methods: This study enrolled 162 consecutive patients with pCAD undergoing coronary angiography. The SYNTAX score (SS) was used to assess coronary lesions' complexity. Linear discriminant analysis (LDA) was employed to construct a multivariate classification model enabling the prediction of coronary lesions' complexity in SS.

Results: The Lp(a) levels among patients with SS ≥ 23 and with SS 1-22 were significantly higher than those with SS = 0 (p = 0.021 and p = 0.027, respectively). The cut-off point for the Lp(a) level of 63.5 mg/dl discriminated subjects with SS ≥ 23 from those with SS ≤ 22 (sensitivity 0.546, specificity 0.780; AUC 0.620; p = 0.027). An LDA-based model involving the Lp(a) level, age, sex and LDL-C provided improved discrimination performance (sensitivity 0.727, specificity 0.733, AUC 0.800; p = 0.0001).

Conclusions: Lp(a) levels in pCAD patients are associated with the advancement of coronary artery lesions in SS patients. An Lp(a) level of 63.5 mg/dl can be the cut-off point for the identification of subjects with SS ≥ 23. LDA-based modelling using Lp(a), LDL-C, age and gender may be an applicable tool for the preliminary identification of patients at risk of more complex coronary artery lesions.

脂蛋白预测过早冠状动脉病变复杂性:一种监督机器学习方法。
前言:我们的目的是评估脂蛋白(a) [Lp(a)]和LDL-C水平作为早发性冠状动脉疾病(pCAD)患者冠状动脉病变复杂性的潜在预测因子的有效性。方法:本研究招募了162例连续接受冠状动脉造影的pad患者。SYNTAX评分(SS)用于评估冠状动脉病变的复杂性。采用线性判别分析(LDA)建立多变量分类模型,预测SS≥23、SS 1 ~ 22患者的Lp(a)水平显著高于SS = 0患者(p = 0.021、p = 0.027)。Lp(a)水平的截断点为63.5 mg/dl,区分SS≥23和SS≤22的受试者(敏感性0.546,特异性0.780;AUC 0.620;P = 0.027)。包含Lp(a)水平、年龄、性别和LDL-C的基于lda的模型具有更好的识别性能(灵敏度0.727,特异性0.733,AUC 0.800;P = 0.0001)。结论:pad患者的Lp(a)水平与SS患者冠状动脉病变进展相关。Lp(a)水平为63.5 mg/dl可作为SS≥23的分界点。利用Lp(a)、LDL-C、年龄和性别建立基于ldl的模型,可能是初步识别有更复杂冠状动脉病变风险的患者的一种适用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Cardiovascular Medicine
Frontiers in Cardiovascular Medicine Medicine-Cardiology and Cardiovascular Medicine
CiteScore
3.80
自引率
11.10%
发文量
3529
审稿时长
14 weeks
期刊介绍: Frontiers? Which frontiers? Where exactly are the frontiers of cardiovascular medicine? And who should be defining these frontiers? At Frontiers in Cardiovascular Medicine we believe it is worth being curious to foresee and explore beyond the current frontiers. In other words, we would like, through the articles published by our community journal Frontiers in Cardiovascular Medicine, to anticipate the future of cardiovascular medicine, and thus better prevent cardiovascular disorders and improve therapeutic options and outcomes of our patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信