Luca Cristin, Lionel Tastet, Dipan J Shah, Marc A Miller, Francesca N Delling
{"title":"Multimodality Imaging of Arrhythmic Risk in Mitral Valve Prolapse.","authors":"Luca Cristin, Lionel Tastet, Dipan J Shah, Marc A Miller, Francesca N Delling","doi":"10.1161/CIRCIMAGING.124.017313","DOIUrl":null,"url":null,"abstract":"<p><p>Mitral valve prolapse (MVP) affects 2% to 3% of the general population and is typically benign. However, a subset of patients may develop arrhythmic complications, including sudden cardiac arrest and sudden cardiac death. This review explores the critical role of multimodality imaging in risk stratification for arrhythmic MVP, emphasizing high-risk features such as bileaflet involvement, mitral annular disjunction, the double-peak strain pattern, mechanical dispersion, and myocardial fibrosis. Echocardiography remains the first-line imaging tool for MVP diagnosis, enabling detailed assessment of leaflet morphology, mitral annular disjunction, and mitral regurgitation quantification. Speckle tracking provides insights into abnormal valvular-myocardial mechanics as a potential arrhythmogenic mechanism in MVP. Cardiac magnetic resonance (CMR) offers detailed myocardial tissue characterization through assessment of replacement and interstitial fibrosis using late gadolinium enhancement and T<sub>1</sub> mapping/extracellular volume fraction, respectively. Hybrid positron emission tomography/CMR highlights the role of inflammation, which may coexist with fibrosis, in explaining the presence of malignant arrhythmias even with relatively limited fibrosis. The assessment of diffuse fibrosis and inflammation by CMR and positron emission tomography/CMR is particularly valuable in patients without classic imaging risk factors such as mitral annular disjunction, severe mitral regurgitation, or replacement fibrosis. We propose an algorithm integrating clinical, rhythmic, echocardiographic, CMR, and positron emission tomography/CMR parameters for arrhythmic risk stratification and management. Although multimodality imaging is essential for comprehensive risk assessment, most available parameters have not yet been validated in prospective studies nor linked directly to mortality. Consequently, these imaging findings should be interpreted alongside the presence of complex ventricular ectopy, which remains the most robust predictor of mortality in arrhythmic MVP.</p>","PeriodicalId":10202,"journal":{"name":"Circulation: Cardiovascular Imaging","volume":" ","pages":"e017313"},"PeriodicalIF":6.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12092187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation: Cardiovascular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCIMAGING.124.017313","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Mitral valve prolapse (MVP) affects 2% to 3% of the general population and is typically benign. However, a subset of patients may develop arrhythmic complications, including sudden cardiac arrest and sudden cardiac death. This review explores the critical role of multimodality imaging in risk stratification for arrhythmic MVP, emphasizing high-risk features such as bileaflet involvement, mitral annular disjunction, the double-peak strain pattern, mechanical dispersion, and myocardial fibrosis. Echocardiography remains the first-line imaging tool for MVP diagnosis, enabling detailed assessment of leaflet morphology, mitral annular disjunction, and mitral regurgitation quantification. Speckle tracking provides insights into abnormal valvular-myocardial mechanics as a potential arrhythmogenic mechanism in MVP. Cardiac magnetic resonance (CMR) offers detailed myocardial tissue characterization through assessment of replacement and interstitial fibrosis using late gadolinium enhancement and T1 mapping/extracellular volume fraction, respectively. Hybrid positron emission tomography/CMR highlights the role of inflammation, which may coexist with fibrosis, in explaining the presence of malignant arrhythmias even with relatively limited fibrosis. The assessment of diffuse fibrosis and inflammation by CMR and positron emission tomography/CMR is particularly valuable in patients without classic imaging risk factors such as mitral annular disjunction, severe mitral regurgitation, or replacement fibrosis. We propose an algorithm integrating clinical, rhythmic, echocardiographic, CMR, and positron emission tomography/CMR parameters for arrhythmic risk stratification and management. Although multimodality imaging is essential for comprehensive risk assessment, most available parameters have not yet been validated in prospective studies nor linked directly to mortality. Consequently, these imaging findings should be interpreted alongside the presence of complex ventricular ectopy, which remains the most robust predictor of mortality in arrhythmic MVP.
期刊介绍:
Circulation: Cardiovascular Imaging, an American Heart Association journal, publishes high-quality, patient-centric articles focusing on observational studies, clinical trials, and advances in applied (translational) research. The journal features innovative, multimodality approaches to the diagnosis and risk stratification of cardiovascular disease. Modalities covered include echocardiography, cardiac computed tomography, cardiac magnetic resonance imaging and spectroscopy, magnetic resonance angiography, cardiac positron emission tomography, noninvasive assessment of vascular and endothelial function, radionuclide imaging, molecular imaging, and others.
Article types considered by Circulation: Cardiovascular Imaging include Original Research, Research Letters, Advances in Cardiovascular Imaging, Clinical Implications of Molecular Imaging Research, How to Use Imaging, Translating Novel Imaging Technologies into Clinical Applications, and Cardiovascular Images.