{"title":"Recent Trends in Drug Delivery Systems.","authors":"Omnia Mohamed Sarhan","doi":"10.1089/adt.2025.031","DOIUrl":null,"url":null,"abstract":"<p><p>\n <i>Drug delivery systems are now being advanced by integrating sophisticated nanotechnologies to enhance therapeutic efficacy. Tremendous advancement has been achieved in the field of cancer therapy through the utilization of hyaluronic acid-based nanocarriers, which are well-acknowledged for their capacity to transport medication precisely to targeted regions. Quantum dots exhibit unique optical properties that allow for precise drug administration and monitoring capabilities. Carbon nanotubes provide a large surface area and exceptional strength, allowing for precise manipulation of drug delivery patterns. Dendrimers are versatile structures that can transport many drugs simultaneously, whereas mesoporous silica-functionalized nanoparticles allow exact manipulation of the release rate of pharmaceuticals. Polymer-lipid hybrid nanoparticles synergistically integrate the durability of polymers with the compatibility of lipids, hence augmenting the availability of drugs within the body. Hexagonal boron nitride nanosheets are becoming more recognized as favorable carriers due to their biocompatibility and potential for tailored administration. These achievements demonstrate the changes happening in the field of pharmaceutical administration, where nanotechnology is used to tackle issues such as restricted bioavailability and unanticipated adverse effects. This ultimately enhances the effectiveness of medicines and improves patient outcomes. Future investigations will focus on improving these technologies for broader therapeutic applications.</i>\n </p>","PeriodicalId":8586,"journal":{"name":"Assay and drug development technologies","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Assay and drug development technologies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/adt.2025.031","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Drug delivery systems are now being advanced by integrating sophisticated nanotechnologies to enhance therapeutic efficacy. Tremendous advancement has been achieved in the field of cancer therapy through the utilization of hyaluronic acid-based nanocarriers, which are well-acknowledged for their capacity to transport medication precisely to targeted regions. Quantum dots exhibit unique optical properties that allow for precise drug administration and monitoring capabilities. Carbon nanotubes provide a large surface area and exceptional strength, allowing for precise manipulation of drug delivery patterns. Dendrimers are versatile structures that can transport many drugs simultaneously, whereas mesoporous silica-functionalized nanoparticles allow exact manipulation of the release rate of pharmaceuticals. Polymer-lipid hybrid nanoparticles synergistically integrate the durability of polymers with the compatibility of lipids, hence augmenting the availability of drugs within the body. Hexagonal boron nitride nanosheets are becoming more recognized as favorable carriers due to their biocompatibility and potential for tailored administration. These achievements demonstrate the changes happening in the field of pharmaceutical administration, where nanotechnology is used to tackle issues such as restricted bioavailability and unanticipated adverse effects. This ultimately enhances the effectiveness of medicines and improves patient outcomes. Future investigations will focus on improving these technologies for broader therapeutic applications.
期刊介绍:
ASSAY and Drug Development Technologies provides access to novel techniques and robust tools that enable critical advances in early-stage screening. This research published in the Journal leads to important therapeutics and platforms for drug discovery and development. This reputable peer-reviewed journal features original papers application-oriented technology reviews, topical issues on novel and burgeoning areas of research, and reports in methodology and technology application.
ASSAY and Drug Development Technologies coverage includes:
-Assay design, target development, and high-throughput technologies-
Hit to Lead optimization and medicinal chemistry through preclinical candidate selection-
Lab automation, sample management, bioinformatics, data mining, virtual screening, and data analysis-
Approaches to assays configured for gene families, inherited, and infectious diseases-
Assays and strategies for adapting model organisms to drug discovery-
The use of stem cells as models of disease-
Translation of phenotypic outputs to target identification-
Exploration and mechanistic studies of the technical basis for assay and screening artifacts