Zhuo Wang, Wendong Guo, Xiaowen Zhang, Yufei Wei, Wanying Zhang, Ning Du, Chunlu Li, Xuan Wu, Fei Yi, Tingting Zhou, Xiang Dong, Qiqiang Guo, Hongde Xu, Erli Wang, Na Li, Rong Cheng, Ziwei Li, Xiaoyu Song, Yingxian Sun, Xun Sun, Liu Cao
{"title":"Tumor microenvironment-associated oxidative stress impairs SIRT1 secretion to suppress anti-tumor immune response.","authors":"Zhuo Wang, Wendong Guo, Xiaowen Zhang, Yufei Wei, Wanying Zhang, Ning Du, Chunlu Li, Xuan Wu, Fei Yi, Tingting Zhou, Xiang Dong, Qiqiang Guo, Hongde Xu, Erli Wang, Na Li, Rong Cheng, Ziwei Li, Xiaoyu Song, Yingxian Sun, Xun Sun, Liu Cao","doi":"10.1016/j.celrep.2025.115679","DOIUrl":null,"url":null,"abstract":"<p><p>Sirtuin-1 (SIRT1) is a classical histone deacetylase well known for its roles in intracellular pathways such as energy metabolism, DNA damage response, and genome stability maintenance. We report that SIRT1 can be secreted into the tumor microenvironment (TME) through an unconventional protein secretion pathway, effectively inhibiting tumor growth. However, under the stressful conditions of the TME, SIRT1 undergoes increased methylation, which impedes its secretion. Consequently, tumor-infiltrating M2 macrophages are unable to acquire sufficient SIRT1 from the TME, resulting in a significant decrease in SIRT1 levels within these cells. This SIRT1 decline leads to elevated expression of programmed cell death ligand 1 (PD-L1) on M2 macrophages, which in turn contributes to CD8<sup>+</sup> T cell exhaustion through the programmed cell death protein 1/PD-L1 interaction pathway. These findings unveil the multifaceted roles and regulatory mechanisms of SIRT1 within the complex TME, providing deeper insights that significantly enhance our understanding of tumor immune-evasion strategies.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 5","pages":"115679"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115679","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sirtuin-1 (SIRT1) is a classical histone deacetylase well known for its roles in intracellular pathways such as energy metabolism, DNA damage response, and genome stability maintenance. We report that SIRT1 can be secreted into the tumor microenvironment (TME) through an unconventional protein secretion pathway, effectively inhibiting tumor growth. However, under the stressful conditions of the TME, SIRT1 undergoes increased methylation, which impedes its secretion. Consequently, tumor-infiltrating M2 macrophages are unable to acquire sufficient SIRT1 from the TME, resulting in a significant decrease in SIRT1 levels within these cells. This SIRT1 decline leads to elevated expression of programmed cell death ligand 1 (PD-L1) on M2 macrophages, which in turn contributes to CD8+ T cell exhaustion through the programmed cell death protein 1/PD-L1 interaction pathway. These findings unveil the multifaceted roles and regulatory mechanisms of SIRT1 within the complex TME, providing deeper insights that significantly enhance our understanding of tumor immune-evasion strategies.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.