{"title":"Causal Artificial Intelligence in Legal Language Processing: A Systematic Review.","authors":"Philippe Prince Tritto, Hiram Ponce","doi":"10.3390/e27040351","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in legal language processing have highlighted limitations in correlation-based artificial intelligence approaches, prompting exploration of Causal Artificial Intelligence (AI) techniques for improved legal reasoning. This systematic review examines the challenges, limitations, and potential impact of Causal AI in legal language processing compared to traditional correlation-based methods. Following the Joanna Briggs Institute methodology, we analyzed 47 papers from 2017 to 2024 across academic databases, private sector publications, and policy documents, evaluating their contributions through a rigorous scoring framework assessing Causal AI implementation, legal relevance, interpretation capabilities, and methodological quality. Our findings reveal that while Causal AI frameworks demonstrate superior capability in capturing legal reasoning compared to correlation-based methods, significant challenges remain in handling legal uncertainty, computational scalability, and potential algorithmic bias. The scarcity of comprehensive real-world implementations and overemphasis on transformer architectures without causal reasoning capabilities represent critical gaps in current research. Future development requires balanced integration of AI innovation with law's narrative functions, particularly focusing on scalable architectures for maintaining causal coherence while preserving interpretability in legal analysis.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025529/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040351","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in legal language processing have highlighted limitations in correlation-based artificial intelligence approaches, prompting exploration of Causal Artificial Intelligence (AI) techniques for improved legal reasoning. This systematic review examines the challenges, limitations, and potential impact of Causal AI in legal language processing compared to traditional correlation-based methods. Following the Joanna Briggs Institute methodology, we analyzed 47 papers from 2017 to 2024 across academic databases, private sector publications, and policy documents, evaluating their contributions through a rigorous scoring framework assessing Causal AI implementation, legal relevance, interpretation capabilities, and methodological quality. Our findings reveal that while Causal AI frameworks demonstrate superior capability in capturing legal reasoning compared to correlation-based methods, significant challenges remain in handling legal uncertainty, computational scalability, and potential algorithmic bias. The scarcity of comprehensive real-world implementations and overemphasis on transformer architectures without causal reasoning capabilities represent critical gaps in current research. Future development requires balanced integration of AI innovation with law's narrative functions, particularly focusing on scalable architectures for maintaining causal coherence while preserving interpretability in legal analysis.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.