{"title":"Improving the Protection of Step-Down Transformers by Utilizing Percentage Differential Protection and Scale-Dependent Intrinsic Entropy.","authors":"Chia-Wei Huang, Chih-Chiang Fang, Wei-Tai Hsu, Chih-Chung Yang, Li-Ting Zhou","doi":"10.3390/e27040444","DOIUrl":null,"url":null,"abstract":"<p><p>Transformer operations are susceptible to both internal and external faults. This study primarily employed software to construct a power system simulation model featuring a step-down transformer. The simulation model comprised three single-phase transformers with ten tap positions at the secondary coil to analyze internal faults. Additionally, ten fault positions between the power transformer and the load were considered for external fault analysis. The protection scheme incorporated percentage differential protection for both the power transformer and the transmission line, aiming to explore fault characteristics. To mitigate the protection device's sensitivity issues, the scale-dependent intrinsic entropy method was utilized as a decision support system to minimize power system protection misoperations. The results indicated the effectiveness and practicality of the auxiliary method through comprehensive failure analysis.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025872/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27040444","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Transformer operations are susceptible to both internal and external faults. This study primarily employed software to construct a power system simulation model featuring a step-down transformer. The simulation model comprised three single-phase transformers with ten tap positions at the secondary coil to analyze internal faults. Additionally, ten fault positions between the power transformer and the load were considered for external fault analysis. The protection scheme incorporated percentage differential protection for both the power transformer and the transmission line, aiming to explore fault characteristics. To mitigate the protection device's sensitivity issues, the scale-dependent intrinsic entropy method was utilized as a decision support system to minimize power system protection misoperations. The results indicated the effectiveness and practicality of the auxiliary method through comprehensive failure analysis.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.