Structure-Signal Relationships of the δ-Opioid-Receptor (DOR)-Selective Agonist KNT-127-Part II: Quinoline Ring Modifications for Enhanced G-Protein Signaling and Reduced β-Arrestin Recruitment.
{"title":"Structure-Signal Relationships of the δ-Opioid-Receptor (DOR)-Selective Agonist KNT-127-Part II: Quinoline Ring Modifications for Enhanced G-Protein Signaling and Reduced β-Arrestin Recruitment.","authors":"Keita Kajino, Tomoya Sugai, Tomoya Kakumoto, Ryoji Kise, Riko Suzuki, Akihisa Tokuda, Yuki Sekiya, Risako Katamoto, Noriki Kutsumura, Yasuyuki Nagumo, Takatsugu Hirokawa, Asuka Inoue, Tsuyoshi Saitoh","doi":"10.1248/cpb.c24-00796","DOIUrl":null,"url":null,"abstract":"<p><p>The δ-opioid receptor (DOR) continues to attract attention as a therapeutic target for the development of safer analgesics due to its ability to mediate pain relief with a lower risk of adverse effects compared to the μ-opioid receptor (MOR). Building upon our previous findings on KNT-127, a DOR-selective agonist with a morphinan scaffold, this study further explores the structure-signal relationships between quinoline ring modifications and the signaling bias toward Gi-protein activation while minimizing β-arrestin-2 recruitment. Our findings highlight the critical role of the 5'-position in modulating signaling bias. Bulky hydrophobic substituents, such as isopropoxy and cyclohexanoxy groups, effectively reduce β-arrestin-2 recruitment without compromising DOR binding affinity or Gi-protein activation. Molecular-docking and molecular dynamics simulations provided mechanistic insights, showing that these modifications change ligand interactions with the V281<sup>6.55</sup>-W284<sup>6.58</sup>-L300<sup>7.35</sup> sub-pocket, thus selectively favoring Gi-protein signaling. These insights clarify the key interactions for the signaling bias in DOR agonists, offering a new framework for the design of DOR-targeted therapies with an improved therapeutic profile.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 4","pages":"336-348"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/cpb.c24-00796","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The δ-opioid receptor (DOR) continues to attract attention as a therapeutic target for the development of safer analgesics due to its ability to mediate pain relief with a lower risk of adverse effects compared to the μ-opioid receptor (MOR). Building upon our previous findings on KNT-127, a DOR-selective agonist with a morphinan scaffold, this study further explores the structure-signal relationships between quinoline ring modifications and the signaling bias toward Gi-protein activation while minimizing β-arrestin-2 recruitment. Our findings highlight the critical role of the 5'-position in modulating signaling bias. Bulky hydrophobic substituents, such as isopropoxy and cyclohexanoxy groups, effectively reduce β-arrestin-2 recruitment without compromising DOR binding affinity or Gi-protein activation. Molecular-docking and molecular dynamics simulations provided mechanistic insights, showing that these modifications change ligand interactions with the V2816.55-W2846.58-L3007.35 sub-pocket, thus selectively favoring Gi-protein signaling. These insights clarify the key interactions for the signaling bias in DOR agonists, offering a new framework for the design of DOR-targeted therapies with an improved therapeutic profile.
期刊介绍:
The CPB covers various chemical topics in the pharmaceutical and health sciences fields dealing with biologically active compounds, natural products, and medicines, while BPB deals with a wide range of biological topics in the pharmaceutical and health sciences fields including scientific research from basic to clinical studies. For details of their respective scopes, please refer to the submission topic categories below.
Topics: Organic chemistry
In silico science
Inorganic chemistry
Pharmacognosy
Health statistics
Forensic science
Biochemistry
Pharmacology
Pharmaceutical care and science
Medicinal chemistry
Analytical chemistry
Physical pharmacy
Natural product chemistry
Toxicology
Environmental science
Molecular and cellular biology
Biopharmacy and pharmacokinetics
Pharmaceutical education
Chemical biology
Physical chemistry
Pharmaceutical engineering
Epidemiology
Hygiene
Regulatory science
Immunology and microbiology
Clinical pharmacy
Miscellaneous.