Xin Hu, Wenhao Xu, Xin Chen, Xiaojie Zhao, Xiaoguang Xu, Jing Peng, Qi Song, Bingyuan Zhang, Min Zhang, Hongzhuan Xuan
{"title":"Black phosphorus enabled non-invasive protein detection with electromagnetic induction well terahertz biosensor chips.","authors":"Xin Hu, Wenhao Xu, Xin Chen, Xiaojie Zhao, Xiaoguang Xu, Jing Peng, Qi Song, Bingyuan Zhang, Min Zhang, Hongzhuan Xuan","doi":"10.1364/BOE.554409","DOIUrl":null,"url":null,"abstract":"<p><p>Terahertz biosensors are employed to detect proteins in cancer cells to facilitate early diagnosis and monitoring of cancer treatments. By optimizing the design and functionality of black phosphorus-based sensors, it is possible to enhance their sensitivity and specificity for specific cancer biomarkers, leading to more accurate diagnostic outcomes. The application of the externally applied magnetic field and the 455 nm continuous-wave laser further augments the sensitivity of cellular responses to THz waves, with magnetic influences typically surpassing those of light fields by 10%-80%. Our results examine the photonic properties of black phosphorus, improve its interaction with terahertz waves, and create prototypes that can selectively identify proteins associated with cancer cells. Additionally, the stability and reproducibility of these sensors have been greatly improved, boosting their potential for widespread use in clinical environments.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"16 4","pages":"1546-1556"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12047730/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.554409","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Terahertz biosensors are employed to detect proteins in cancer cells to facilitate early diagnosis and monitoring of cancer treatments. By optimizing the design and functionality of black phosphorus-based sensors, it is possible to enhance their sensitivity and specificity for specific cancer biomarkers, leading to more accurate diagnostic outcomes. The application of the externally applied magnetic field and the 455 nm continuous-wave laser further augments the sensitivity of cellular responses to THz waves, with magnetic influences typically surpassing those of light fields by 10%-80%. Our results examine the photonic properties of black phosphorus, improve its interaction with terahertz waves, and create prototypes that can selectively identify proteins associated with cancer cells. Additionally, the stability and reproducibility of these sensors have been greatly improved, boosting their potential for widespread use in clinical environments.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.