Transcriptomic and Proteomic Analyses of the Liver and Ileum Identify Key Genes and Pathways Associated with Low and High Groups of Social Genetic Effect of Residual Feed Intake.
IF 2.7 2区 农林科学Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Patrick Kofi Makafui Tecku, Zhenjian Zhao, Kai Wang, Xiang Ji, Dong Chen, Qi Shen, Yang Yu, Shengdi Cui, Junge Wang, Ziyang Chen, Jia Xue, Guoqing Tang
{"title":"Transcriptomic and Proteomic Analyses of the Liver and Ileum Identify Key Genes and Pathways Associated with Low and High Groups of Social Genetic Effect of Residual Feed Intake.","authors":"Patrick Kofi Makafui Tecku, Zhenjian Zhao, Kai Wang, Xiang Ji, Dong Chen, Qi Shen, Yang Yu, Shengdi Cui, Junge Wang, Ziyang Chen, Jia Xue, Guoqing Tang","doi":"10.3390/ani15091345","DOIUrl":null,"url":null,"abstract":"<p><p>Social genetic effects (SGEs) refer to how the genotypes of other individuals impact an individual's phenotype within a population. These effects significantly influence the feeding behavior and production performance in pigs, though their mechanisms are not well understood. This study examined two pig groups with extreme SGE values for residual feed intake (RFI), analyzing their feeding behavior and the molecular mechanisms involved using transcriptomics and proteomics analysis of liver and ileum tissues. Pigs with higher SGE values exhibited distinct feeding patterns, spending more time at the feeder but making fewer visits. They consumed less overall feed but had a higher intake per visit. Differentially expressed genes and proteins were identified in the liver and ileum and were associated with processes such as mitochondrial functions, oxidative phosphorylation, and cholesterol metabolism. Integrated analysis supported these findings. Combined transcriptome and proteome analysis identified potential key genes that were associated with processes including mitochondrial processes, oxidative phosphorylation, fat digestion and absorption, and cholesterol metabolism. The results showed that pigs with differing SGE values display different feeding behaviors and utilize distinct molecular pathways affecting RFI. These findings offer valuable insights into how SGEs influence feed efficiency and shed light on the fundamental mechanisms underlying it.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15091345","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Social genetic effects (SGEs) refer to how the genotypes of other individuals impact an individual's phenotype within a population. These effects significantly influence the feeding behavior and production performance in pigs, though their mechanisms are not well understood. This study examined two pig groups with extreme SGE values for residual feed intake (RFI), analyzing their feeding behavior and the molecular mechanisms involved using transcriptomics and proteomics analysis of liver and ileum tissues. Pigs with higher SGE values exhibited distinct feeding patterns, spending more time at the feeder but making fewer visits. They consumed less overall feed but had a higher intake per visit. Differentially expressed genes and proteins were identified in the liver and ileum and were associated with processes such as mitochondrial functions, oxidative phosphorylation, and cholesterol metabolism. Integrated analysis supported these findings. Combined transcriptome and proteome analysis identified potential key genes that were associated with processes including mitochondrial processes, oxidative phosphorylation, fat digestion and absorption, and cholesterol metabolism. The results showed that pigs with differing SGE values display different feeding behaviors and utilize distinct molecular pathways affecting RFI. These findings offer valuable insights into how SGEs influence feed efficiency and shed light on the fundamental mechanisms underlying it.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).