Claire Caron, Elizabeth Anne McCullagh, Giulia Bertolin
{"title":"Sex-specific loss of mitochondrial membrane integrity in the auditory brainstem of a mouse model of Fragile X Syndrome.","authors":"Claire Caron, Elizabeth Anne McCullagh, Giulia Bertolin","doi":"10.1098/rsob.240384","DOIUrl":null,"url":null,"abstract":"<p><p>Sound sensitivity is a common sensory complaint for people with autism spectrum disorder (ASD). How and why sounds are perceived as overwhelming by affected people is unknown. To process sound information properly, the brain requires high activity and fast processing, as seen in areas like the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem. Recent work has shown dysfunction in mitochondria in a genetic model of ASD, Fragile X Syndrome (FXS). Whether mitochondrial functions are also altered in sound-processing neurons has not been characterized yet. To address this question, we imaged MNTB in a mouse model of FXS. We stained MNTB brain slices from wild-type and FXS mice with two mitochondrial markers, TOMM20 and PMPCB, located on the outer mitochondrial membrane and in the matrix, respectively. Our imaging reveals significant sex-specific differences between genotypes. Colocalization analyses between TOMM20 and PMPCB show that the integrity of mitochondrial subcompartments is most disrupted in female FXS mice compared with female wild-type mice. We highlight a quantitative fluorescence microscopy pipeline to monitor mitochondrial functions in the MNTB from control or FXS mice and provide four complementary readouts, paving the way to understanding how cellular mechanisms important to sound encoding are altered in ASD.</p>","PeriodicalId":19629,"journal":{"name":"Open Biology","volume":"15 5","pages":"240384"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082877/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsob.240384","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sound sensitivity is a common sensory complaint for people with autism spectrum disorder (ASD). How and why sounds are perceived as overwhelming by affected people is unknown. To process sound information properly, the brain requires high activity and fast processing, as seen in areas like the medial nucleus of the trapezoid body (MNTB) of the auditory brainstem. Recent work has shown dysfunction in mitochondria in a genetic model of ASD, Fragile X Syndrome (FXS). Whether mitochondrial functions are also altered in sound-processing neurons has not been characterized yet. To address this question, we imaged MNTB in a mouse model of FXS. We stained MNTB brain slices from wild-type and FXS mice with two mitochondrial markers, TOMM20 and PMPCB, located on the outer mitochondrial membrane and in the matrix, respectively. Our imaging reveals significant sex-specific differences between genotypes. Colocalization analyses between TOMM20 and PMPCB show that the integrity of mitochondrial subcompartments is most disrupted in female FXS mice compared with female wild-type mice. We highlight a quantitative fluorescence microscopy pipeline to monitor mitochondrial functions in the MNTB from control or FXS mice and provide four complementary readouts, paving the way to understanding how cellular mechanisms important to sound encoding are altered in ASD.
期刊介绍:
Open Biology is an online journal that welcomes original, high impact research in cell and developmental biology, molecular and structural biology, biochemistry, neuroscience, immunology, microbiology and genetics.