An iterative ROC procedure identifies white matter tracts diagnostic for traumatic brain injury: an exploratory analysis in U.S. Veterans.

IF 1.5 4区 医学 Q4 NEUROSCIENCES
Keith L Main, Andrei A Vakhtin, Jiachen Zhuo, Donald Marion, Maheen M Adamson, J Wesson Ashford, Rao Gullapalli, Ansgar J Furst
{"title":"An iterative ROC procedure identifies white matter tracts diagnostic for traumatic brain injury: an exploratory analysis in U.S. Veterans.","authors":"Keith L Main, Andrei A Vakhtin, Jiachen Zhuo, Donald Marion, Maheen M Adamson, J Wesson Ashford, Rao Gullapalli, Ansgar J Furst","doi":"10.1080/02699052.2025.2492746","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Understanding the pathophysiology of traumatic brain injury (TBI) is crucial for effectively managing care. Diffusion tensor imaging (DTI) is an MRI technology that evaluates TBI pathology in brain white matter. However, DTI analysis generates numerous measures. Choosing between them remains an obstacle to clinical translation. In this study, we leveraged an iterative receiver operating characteristic (ROC) analysis to examine white matter tracts in a group of 380 Veterans, consisting of TBI (<i>n</i> = 243) and non-TBI patients (<i>n</i> = 137).</p><p><strong>Method: </strong>For each participant, we obtained a whole brain tractography and extracted DTI measures from 50 tracts. The ROC analyzed these variables and produced decision trees of tracts diagnostic for TBI. We expanded our findings by applying jackknife resampling. This procedure removed potential outliers and yielded tracts not observed in the initial ROCs. Finally, we used logistic regression to confirm the tracts predicted TBI status.</p><p><strong>Results: </strong>Our results indicate ROC can identify tracts diagnostic for TBI. We also found that groups of tracts are more predictive than any single one.</p><p><strong>Conclusions: </strong>These analyses show that ROC is a useful tool for exploring large, multivariate datasets and may inform the design of clinical algorithms.</p>","PeriodicalId":9082,"journal":{"name":"Brain injury","volume":" ","pages":"1-19"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain injury","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02699052.2025.2492746","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Understanding the pathophysiology of traumatic brain injury (TBI) is crucial for effectively managing care. Diffusion tensor imaging (DTI) is an MRI technology that evaluates TBI pathology in brain white matter. However, DTI analysis generates numerous measures. Choosing between them remains an obstacle to clinical translation. In this study, we leveraged an iterative receiver operating characteristic (ROC) analysis to examine white matter tracts in a group of 380 Veterans, consisting of TBI (n = 243) and non-TBI patients (n = 137).

Method: For each participant, we obtained a whole brain tractography and extracted DTI measures from 50 tracts. The ROC analyzed these variables and produced decision trees of tracts diagnostic for TBI. We expanded our findings by applying jackknife resampling. This procedure removed potential outliers and yielded tracts not observed in the initial ROCs. Finally, we used logistic regression to confirm the tracts predicted TBI status.

Results: Our results indicate ROC can identify tracts diagnostic for TBI. We also found that groups of tracts are more predictive than any single one.

Conclusions: These analyses show that ROC is a useful tool for exploring large, multivariate datasets and may inform the design of clinical algorithms.

一个反复的ROC程序确定白质束诊断创伤性脑损伤:在美国退伍军人的探索性分析。
目的:了解创伤性脑损伤(TBI)的病理生理是有效管理护理的关键。弥散张量成像(DTI)是一种评估脑白质损伤病理的MRI技术。然而,DTI分析产生了许多度量。在它们之间进行选择仍然是临床翻译的障碍。在这项研究中,我们利用迭代的受试者工作特征(ROC)分析来检查380名退伍军人的白质束,其中包括脑外伤患者(n = 243)和非脑外伤患者(n = 137)。方法:我们对每个参与者进行全脑束造影,并从50个束中提取DTI测量值。ROC分析了这些变量并生成了诊断TBI的决策树。我们通过应用叠刀重采样扩展了我们的发现。这一过程消除了潜在的异常值,并产生了在初始roc中未观察到的束。最后,我们使用逻辑回归来确认预测TBI状态的束。结果:我们的研究结果表明,ROC可以识别诊断TBI的尿路。我们还发现,一组束比任何一个束都更具预测性。结论:这些分析表明,ROC是探索大型、多变量数据集的有用工具,可以为临床算法的设计提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain injury
Brain injury 医学-康复医学
CiteScore
3.50
自引率
5.30%
发文量
148
审稿时长
12 months
期刊介绍: Brain Injury publishes critical information relating to research and clinical practice, adult and pediatric populations. The journal covers a full range of relevant topics relating to clinical, translational, and basic science research. Manuscripts address emergency and acute medical care, acute and post-acute rehabilitation, family and vocational issues, and long-term supports. Coverage includes assessment and interventions for functional, communication, neurological and psychological disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信