{"title":"Filamented light (FLight) biofabrication of mini-tendon models show tunable matrix confinement and nuclear morphology.","authors":"Hao Liu, Lynn Scherpe, Linnea B Hummer, Jess Gerrit Snedeker, Marcy Zenobi-Wong","doi":"10.1088/1758-5090/adce35","DOIUrl":null,"url":null,"abstract":"<p><p>One hallmark of healthy tendon tissue is the high confinement of tenocytes between tightly packed, highly aligned collagen fibers. During tendinopathy, this organization becomes dysregulated, leading to cells with round-shaped morphology and collagen fibers which exhibit crimping and misalignment. The elongated nuclei in healthy tendons are linked to matrix homeostasis through distinct mechanotransduction pathways, and it is believed that the loss of nuclear confinement could upregulate genes associated with abnormal matrix remodeling. Replicating the cell and nuclear morphology of healthy and diseased states of tendon, however, remains a significant challenge for engineered<i>in vitro</i>tendon models. Here we report on a high throughput biofabrication of mini-tendons that mimick the tendon core compartment based on the filamented light (FLight) approach. Each mini-tendon, with a length of 4 mm, was composed of parallel hydrogel microfilaments (2-5<i>µ</i>m diameter) and microchannels (2-10<i>µ</i>m diameter) that confined the cells. We generated four distinct matrices with varying stiffness (7-40 kPa) and microchannel dimensions. After 14 d of culture, 29% of tenocytes in the softest matrix with the largest microchannel diameter were aligned, exhibiting an average nuclear aspect ratio (nAR) of 2.1. In contrast, 84% of tenocytes in the stiffest matrix with the smallest microchannel diameter were highly aligned, with a mean nAR of 3.4. When tenocytes were cultured<i>on</i>the FLight hydrogels (2D) as opposed to within the hydrogels three-dimensional (3D), the mean nAR was less than 1.9, indicating that nuclear morphology is significantly more confined in 3D environments. By tuning the stiffness and microarchitecture of the FLight matrix, we demonstrated that mechanical confinement can be modulated to exert control over the extent of nuclear confinement. This high-throughput, tunable platform offers a promising approach for studying the mechanobiology of healthy and diseased tendons and for eventual testing of drug compounds against tendinopathy.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":"17 3","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/adce35","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
One hallmark of healthy tendon tissue is the high confinement of tenocytes between tightly packed, highly aligned collagen fibers. During tendinopathy, this organization becomes dysregulated, leading to cells with round-shaped morphology and collagen fibers which exhibit crimping and misalignment. The elongated nuclei in healthy tendons are linked to matrix homeostasis through distinct mechanotransduction pathways, and it is believed that the loss of nuclear confinement could upregulate genes associated with abnormal matrix remodeling. Replicating the cell and nuclear morphology of healthy and diseased states of tendon, however, remains a significant challenge for engineeredin vitrotendon models. Here we report on a high throughput biofabrication of mini-tendons that mimick the tendon core compartment based on the filamented light (FLight) approach. Each mini-tendon, with a length of 4 mm, was composed of parallel hydrogel microfilaments (2-5µm diameter) and microchannels (2-10µm diameter) that confined the cells. We generated four distinct matrices with varying stiffness (7-40 kPa) and microchannel dimensions. After 14 d of culture, 29% of tenocytes in the softest matrix with the largest microchannel diameter were aligned, exhibiting an average nuclear aspect ratio (nAR) of 2.1. In contrast, 84% of tenocytes in the stiffest matrix with the smallest microchannel diameter were highly aligned, with a mean nAR of 3.4. When tenocytes were culturedonthe FLight hydrogels (2D) as opposed to within the hydrogels three-dimensional (3D), the mean nAR was less than 1.9, indicating that nuclear morphology is significantly more confined in 3D environments. By tuning the stiffness and microarchitecture of the FLight matrix, we demonstrated that mechanical confinement can be modulated to exert control over the extent of nuclear confinement. This high-throughput, tunable platform offers a promising approach for studying the mechanobiology of healthy and diseased tendons and for eventual testing of drug compounds against tendinopathy.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).