Marie Ottenbrite, Gokhan Yilmaz, Maria Chan, John Devenish, Mingsong Kang, Hanhong Dan, Calvin Ho-Fung Lau, Sabrina Capitani, Catherine Carrillo, Kyrylo Bessonov, John H E Nash, Edward Topp, Jiewen Guan
{"title":"Food-borne microbes influence conjugative transfer of antimicrobial resistance plasmids in pre-disturbed gut microbiome.","authors":"Marie Ottenbrite, Gokhan Yilmaz, Maria Chan, John Devenish, Mingsong Kang, Hanhong Dan, Calvin Ho-Fung Lau, Sabrina Capitani, Catherine Carrillo, Kyrylo Bessonov, John H E Nash, Edward Topp, Jiewen Guan","doi":"10.1139/cjm-2024-0168","DOIUrl":null,"url":null,"abstract":"<p><p>Ingestion of antibiotic-resistant bacteria following antibiotic treatments may lead to the transfer of antimicrobial resistance genes (ARGs) within a disturbed gut microbiota. However, it remains unclear whether and how microbes present in food matrices influence ARG transfer. Thus, a previously established mouse model, which demonstrated the conjugative transfer of a multi-drug resistance plasmid (pIncA/C) from <i>Salmonella</i> Heidelberg (donor) to <i>Salmonella</i> Typhimurium (recipient), was used to assess the effects of food-borne microbes derived from fresh carrots on pIncA/C transfer. Mice were pre-treated with ampicillin, streptomycin, sulfamethazine, or left untreated as a control to facilitate bacterial colonization. Contrary to previous findings where high-density colonization of the donor and recipient bacteria occurred in the absence of food-borne microbes, the presence of these microbes resulted in a low abundance of <i>S</i>. Typhimurium and no detection of <i>S</i>. Typhimurium transconjugants in the fecal samples from any of the mice. However, in mice pre-treated with streptomycin, a significant reduction in microbial species richness allowed for the significant enrichment of <i>Enterobacteriaceae</i> and pIncA/C transfer to bacteria from the genera <i>Escherichia, Enterobacter, Citrobacter</i>, and <i>Proteus</i>. These findings suggest that food-borne microbes may enhance ARG dissemination by influencing the population dynamics of bacterial hosts within a pre-disturbed gut microbiome.</p>","PeriodicalId":9381,"journal":{"name":"Canadian journal of microbiology","volume":" ","pages":"1-11"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/cjm-2024-0168","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ingestion of antibiotic-resistant bacteria following antibiotic treatments may lead to the transfer of antimicrobial resistance genes (ARGs) within a disturbed gut microbiota. However, it remains unclear whether and how microbes present in food matrices influence ARG transfer. Thus, a previously established mouse model, which demonstrated the conjugative transfer of a multi-drug resistance plasmid (pIncA/C) from Salmonella Heidelberg (donor) to Salmonella Typhimurium (recipient), was used to assess the effects of food-borne microbes derived from fresh carrots on pIncA/C transfer. Mice were pre-treated with ampicillin, streptomycin, sulfamethazine, or left untreated as a control to facilitate bacterial colonization. Contrary to previous findings where high-density colonization of the donor and recipient bacteria occurred in the absence of food-borne microbes, the presence of these microbes resulted in a low abundance of S. Typhimurium and no detection of S. Typhimurium transconjugants in the fecal samples from any of the mice. However, in mice pre-treated with streptomycin, a significant reduction in microbial species richness allowed for the significant enrichment of Enterobacteriaceae and pIncA/C transfer to bacteria from the genera Escherichia, Enterobacter, Citrobacter, and Proteus. These findings suggest that food-borne microbes may enhance ARG dissemination by influencing the population dynamics of bacterial hosts within a pre-disturbed gut microbiome.
期刊介绍:
Published since 1954, the Canadian Journal of Microbiology is a monthly journal that contains new research in the field of microbiology, including applied microbiology and biotechnology; microbial structure and function; fungi and other eucaryotic protists; infection and immunity; microbial ecology; physiology, metabolism and enzymology; and virology, genetics, and molecular biology. It also publishes review articles and notes on an occasional basis, contributed by recognized scientists worldwide.