Sanghyeon Park, Seokmin Go, Seonhyo Kim, Jaeho Shim
{"title":"Deep Learning-Based Classification of Canine Cataracts from Ocular B-Mode Ultrasound Images.","authors":"Sanghyeon Park, Seokmin Go, Seonhyo Kim, Jaeho Shim","doi":"10.3390/ani15091327","DOIUrl":null,"url":null,"abstract":"<p><p>Cataracts are a prevalent cause of vision loss in dogs, and timely diagnosis is essential for effective treatment. This study aimed to develop and evaluate deep learning models to automatically classify canine cataracts from ocular ultrasound images. A dataset of 3155 ultrasound images (comprising 1329 No cataract, 614 Cortical, 1033 Mature, and 179 Hypermature cases) was used to train and validate four widely used deep learning models (AlexNet, EfficientNetB3, ResNet50, and DenseNet161). Data augmentation and normalization techniques were applied to address category imbalance. DenseNet161 demonstrated the best performance, achieving a test accuracy of 92.03% and an F1-score of 0.8744. The confusion matrix revealed that the model attained the highest accuracy for the No cataract category (99.0%), followed by Cortical (90.3%) and Mature (86.5%) cataracts, while Hypermature cataracts were classified with lower accuracy (78.6%). Receiver Operating Characteristic (ROC) curve analysis confirmed strong discriminative ability, with an area under the curve (AUC) of 0.99. Visual interpretation using Gradient-weighted Class Activation Mapping indicated that the model effectively focused on clinically relevant regions. This deep learning-based classification framework shows significant potential for assisting veterinarians in diagnosing cataracts, thereby improving clinical decision-making in veterinary ophthalmology.</p>","PeriodicalId":7955,"journal":{"name":"Animals","volume":"15 9","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12070956/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animals","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/ani15091327","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Cataracts are a prevalent cause of vision loss in dogs, and timely diagnosis is essential for effective treatment. This study aimed to develop and evaluate deep learning models to automatically classify canine cataracts from ocular ultrasound images. A dataset of 3155 ultrasound images (comprising 1329 No cataract, 614 Cortical, 1033 Mature, and 179 Hypermature cases) was used to train and validate four widely used deep learning models (AlexNet, EfficientNetB3, ResNet50, and DenseNet161). Data augmentation and normalization techniques were applied to address category imbalance. DenseNet161 demonstrated the best performance, achieving a test accuracy of 92.03% and an F1-score of 0.8744. The confusion matrix revealed that the model attained the highest accuracy for the No cataract category (99.0%), followed by Cortical (90.3%) and Mature (86.5%) cataracts, while Hypermature cataracts were classified with lower accuracy (78.6%). Receiver Operating Characteristic (ROC) curve analysis confirmed strong discriminative ability, with an area under the curve (AUC) of 0.99. Visual interpretation using Gradient-weighted Class Activation Mapping indicated that the model effectively focused on clinically relevant regions. This deep learning-based classification framework shows significant potential for assisting veterinarians in diagnosing cataracts, thereby improving clinical decision-making in veterinary ophthalmology.
AnimalsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
4.90
自引率
16.70%
发文量
3015
审稿时长
20.52 days
期刊介绍:
Animals (ISSN 2076-2615) is an international and interdisciplinary scholarly open access journal. It publishes original research articles, reviews, communications, and short notes that are relevant to any field of study that involves animals, including zoology, ethnozoology, animal science, animal ethics and animal welfare. However, preference will be given to those articles that provide an understanding of animals within a larger context (i.e., the animals'' interactions with the outside world, including humans). There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental details and/or method of study, must be provided for research articles. Articles submitted that involve subjecting animals to unnecessary pain or suffering will not be accepted, and all articles must be submitted with the necessary ethical approval (please refer to the Ethical Guidelines for more information).