E Huch, I Nahum-Shani, L Potter, C Lam, D W Wetter, W Dempsey
{"title":"Data integration methods for micro-randomized trials.","authors":"E Huch, I Nahum-Shani, L Potter, C Lam, D W Wetter, W Dempsey","doi":"10.1093/biomtc/ujaf002","DOIUrl":null,"url":null,"abstract":"<p><p>Existing statistical methods for the analysis of micro-randomized trials (MRTs) are designed to estimate causal excursion effects using data from a single MRT. In practice, however, researchers can often find previous MRTs that employ similar interventions. In this paper, we develop data integration methods that capitalize on this additional information, leading to statistical efficiency gains. To further increase efficiency, we demonstrate how to combine these approaches according to a generalization of multivariate precision weighting that allows for correlation between estimates, and we show that the resulting meta-estimator possesses an asymptotic optimality property. We illustrate our methods in simulation and in a case study involving 2 MRTs in the area of smoking cessation, finding that the proposed methods can reduce standard errors by over 30% without sacrificing asymptotic unbiasedness or calibrated statistical inference.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Existing statistical methods for the analysis of micro-randomized trials (MRTs) are designed to estimate causal excursion effects using data from a single MRT. In practice, however, researchers can often find previous MRTs that employ similar interventions. In this paper, we develop data integration methods that capitalize on this additional information, leading to statistical efficiency gains. To further increase efficiency, we demonstrate how to combine these approaches according to a generalization of multivariate precision weighting that allows for correlation between estimates, and we show that the resulting meta-estimator possesses an asymptotic optimality property. We illustrate our methods in simulation and in a case study involving 2 MRTs in the area of smoking cessation, finding that the proposed methods can reduce standard errors by over 30% without sacrificing asymptotic unbiasedness or calibrated statistical inference.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.