{"title":"Identifying sex-based disparities in porcine mitochondrial function.","authors":"Hao Liu, Wenshu Shi, Xing Zhang, Xinmiao He, Xingbo Zhao","doi":"10.1080/10495398.2025.2488068","DOIUrl":null,"url":null,"abstract":"<p><p>In pigs, the effect of sex on production and reproductive traits has been largely reported, however, whether sex exerts its influence through regulating mitochondrial function is still unclear. In this study, we constructed 15 male cells and 15 female fibroblasts derived from 35-day and 50-day fetuses, newborn piglets and 1-year-old pigs to identify the sex effect on mitochondrial functions. Results indicated significant differences on cellular and molecular characteristics between male and female cells, including energy metabolic trait, mitochondrial DNA (mtDNA) replication and transcription, and mRNA expressions of mitochondrial biogenesis genes and mitoprotease genes. Referring to sex, males exhibited significantly higher oxygen consumption rate productions, levels of reactive oxygen species (ROS) and mtDNA copy numbers than those with females in muscle and ear fibroblasts. And the expressions of mtDNA, mitochondrial biogenesis genes (<i>POLG</i>, <i>PPARGC1A</i>, <i>TFAM</i> and <i>TWNK</i>) and <i>XPNPEP3</i> were higher in males than females in ear fibroblasts derived from 1-year-old adult pigs (EFA cells). While, the cell proliferation and expressions of genes related to ROS metabolism were not influenced by sex. The results highlight the effect of sex on mitochondrial function and gene expression, and provide important data for a comprehensive understanding of the mechanisms underlying sex regulation of energy metabolism-related traits in pigs.</p>","PeriodicalId":7836,"journal":{"name":"Animal Biotechnology","volume":"36 1","pages":"2488068"},"PeriodicalIF":1.7000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10495398.2025.2488068","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In pigs, the effect of sex on production and reproductive traits has been largely reported, however, whether sex exerts its influence through regulating mitochondrial function is still unclear. In this study, we constructed 15 male cells and 15 female fibroblasts derived from 35-day and 50-day fetuses, newborn piglets and 1-year-old pigs to identify the sex effect on mitochondrial functions. Results indicated significant differences on cellular and molecular characteristics between male and female cells, including energy metabolic trait, mitochondrial DNA (mtDNA) replication and transcription, and mRNA expressions of mitochondrial biogenesis genes and mitoprotease genes. Referring to sex, males exhibited significantly higher oxygen consumption rate productions, levels of reactive oxygen species (ROS) and mtDNA copy numbers than those with females in muscle and ear fibroblasts. And the expressions of mtDNA, mitochondrial biogenesis genes (POLG, PPARGC1A, TFAM and TWNK) and XPNPEP3 were higher in males than females in ear fibroblasts derived from 1-year-old adult pigs (EFA cells). While, the cell proliferation and expressions of genes related to ROS metabolism were not influenced by sex. The results highlight the effect of sex on mitochondrial function and gene expression, and provide important data for a comprehensive understanding of the mechanisms underlying sex regulation of energy metabolism-related traits in pigs.
期刊介绍:
Biotechnology can be defined as any technique that uses living organisms (or parts of organisms like cells, genes, proteins) to make or modify products, to improve plants, animals or microorganisms for a specific use. Animal Biotechnology publishes research on the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles and short research communications, as well as comprehensive reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology applied to animal biotechnology.
Submissions on the following topics are particularly welcome:
- Applied microbiology, immunogenetics and antibiotic resistance
- Genome engineering and animal models
- Comparative genomics
- Gene editing and CRISPRs
- Reproductive biotechnologies
- Synthetic biology and design of new genomes