{"title":"Analysis of Single Nuclei in a Microfluidic Cytometer Towards Metaphase Enrichment.","authors":"Cristian Brandi, Adele De Ninno, Filippo Ruggiero, Valentina Mussi, Mauro Nanni, Federica Caselli","doi":"10.1002/elps.8152","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying analyzable metaphase chromosomes is crucial for karyotyping, a common procedure used by clinicians to diagnose genetic disorders and some forms of cancer. This task is often laborious and time-consuming, making it essential to develop automated, efficient, and reliable methods to assist clinical technicians. In this work, an original label-free microfluidic approach to identify potential metaphases is developed that uses impedance-based detection of individual flowing nuclei and machine-learning-based processing of synchronized high-speed videos. Specifically, impedance signals are used to identify nucleus-containing frames, which are then processed to extract the contour of each nucleus. Feature extraction is then performed, and both unsupervised and supervised classification approaches are implemented to identify potential metaphases from those features. The proposed framework is tested on K562 cells, and the highest classification accuracy is obtained with the supervised approach coupled with a feature selection procedure and the Synthetic Minority Over-sampling Technique (SMOTE). Overall, this study encourages future developments aimed at integrating a sorting functionality in the device, thus achieving an effective microfluidic system for metaphase enrichment.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.8152","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying analyzable metaphase chromosomes is crucial for karyotyping, a common procedure used by clinicians to diagnose genetic disorders and some forms of cancer. This task is often laborious and time-consuming, making it essential to develop automated, efficient, and reliable methods to assist clinical technicians. In this work, an original label-free microfluidic approach to identify potential metaphases is developed that uses impedance-based detection of individual flowing nuclei and machine-learning-based processing of synchronized high-speed videos. Specifically, impedance signals are used to identify nucleus-containing frames, which are then processed to extract the contour of each nucleus. Feature extraction is then performed, and both unsupervised and supervised classification approaches are implemented to identify potential metaphases from those features. The proposed framework is tested on K562 cells, and the highest classification accuracy is obtained with the supervised approach coupled with a feature selection procedure and the Synthetic Minority Over-sampling Technique (SMOTE). Overall, this study encourages future developments aimed at integrating a sorting functionality in the device, thus achieving an effective microfluidic system for metaphase enrichment.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.