{"title":"Global knowledge mapping of receptor activator of nuclear factor kappa-B ligand in osteoporotic fractures: a bibliometric analysis (2001-2024).","authors":"Shuai Lu, Huaishuang Shen, Minjuan Li, Yiming Luo, Hao Sun, Xian Zhao, Jianming Chen, Ruifeng Bai, Pengli Han, Yejun Zha, Xieyuan Jiang","doi":"10.3389/fmolb.2025.1545109","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Receptor activator of nuclear factor kappa-B ligand (RANKL) plays a critical role in bone metabolism and the pathogenesis of osteoporotic fractures. This study aims to conduct a bibliometric analysis of global research pertaining to RANKL and osteoporotic fractures to identify key trends, influential studies, and collaborative networks.</p><p><strong>Methods: </strong>A literature search was conducted to identify articles found in the Web of Science Core Collection database regarding RANKL and osteoporotic fractures from 2001 to 2024. A bibliometric analysis was performed using VOSviewer, CiteSpace, and R 4.3.3 for the publication volume, country and institution contributions, journal impact, author influence, and research hotspots.</p><p><strong>Results: </strong>A total of 214 articles were analyzed. Publication rates have steadily increased, with a peak of 21 papers in 2020. The U.S., China, and South Korea were the top contributing countries, and leading institutions included Harvard University and Dankook University. The <i>Journal of Bone and Mineral Research</i>, <i>Osteoporosis International</i>, and <i>Bone</i> were the journals of highest impact. At the level of authors, Heiss-Christian published the highest number and Christiansen-Claus had the strongest citation impact (1,368 citations). Research evolved from basic biological mechanisms (2001-2010) through clinical applications (2011-2017) to recent renewed interest in fundamental RANKL biology (2018-2024). Key research hotspots included postmenopausal osteoporosis, bone mineral density, and osteoclast differentiation, with emerging focus on RANKL's role beyond skeletal metabolism.</p><p><strong>Conclusion: </strong>This bibliometric analysis provides a comprehensive overview of RANKL research in osteoporotic fractures, highlighting key priorities for future investigation. Future studies should prioritize understanding RANKL's broader physiological roles, developing better predictive markers, and optimizing personalized treatment strategies.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1545109"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978631/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1545109","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Receptor activator of nuclear factor kappa-B ligand (RANKL) plays a critical role in bone metabolism and the pathogenesis of osteoporotic fractures. This study aims to conduct a bibliometric analysis of global research pertaining to RANKL and osteoporotic fractures to identify key trends, influential studies, and collaborative networks.
Methods: A literature search was conducted to identify articles found in the Web of Science Core Collection database regarding RANKL and osteoporotic fractures from 2001 to 2024. A bibliometric analysis was performed using VOSviewer, CiteSpace, and R 4.3.3 for the publication volume, country and institution contributions, journal impact, author influence, and research hotspots.
Results: A total of 214 articles were analyzed. Publication rates have steadily increased, with a peak of 21 papers in 2020. The U.S., China, and South Korea were the top contributing countries, and leading institutions included Harvard University and Dankook University. The Journal of Bone and Mineral Research, Osteoporosis International, and Bone were the journals of highest impact. At the level of authors, Heiss-Christian published the highest number and Christiansen-Claus had the strongest citation impact (1,368 citations). Research evolved from basic biological mechanisms (2001-2010) through clinical applications (2011-2017) to recent renewed interest in fundamental RANKL biology (2018-2024). Key research hotspots included postmenopausal osteoporosis, bone mineral density, and osteoclast differentiation, with emerging focus on RANKL's role beyond skeletal metabolism.
Conclusion: This bibliometric analysis provides a comprehensive overview of RANKL research in osteoporotic fractures, highlighting key priorities for future investigation. Future studies should prioritize understanding RANKL's broader physiological roles, developing better predictive markers, and optimizing personalized treatment strategies.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.