Mechthild Pohlschroder, Stefan Schulze, Friedhelm Pfeiffer, Yirui Hong
{"title":"<i>Haloferax volcanii</i>: a versatile model for studying archaeal biology.","authors":"Mechthild Pohlschroder, Stefan Schulze, Friedhelm Pfeiffer, Yirui Hong","doi":"10.1128/jb.00062-25","DOIUrl":null,"url":null,"abstract":"<p><p>Archaea, once thought limited to extreme environments, are now recognized as ubiquitous and fundamental players in global ecosystems. While morphologically similar to bacteria, they are a distinct domain of life and are evolutionarily closer to eukaryotes. The development of model archaeal systems has facilitated studies that have underscored unique physiological, biochemical, and genetic characteristics of archaea. <i>Haloferax volcanii</i> stands out as a model archaeon due to its ease of culturing, ability to grow on defined media, amenability to genetic and biochemical methods, as well as the support from a highly collaborative community. This haloarchaeon has been instrumental in exploring diverse aspects of archaeal biology, ranging from polyploidy, replication origins, and post-translational modifications to cell surface biogenesis, metabolism, and adaptation to high-salt environments. The extensive use of <i>Hfx. volcanii</i> further catalyzed the development of new technologies and databases, facilitating discovery-driven research that offers significant implications for biotechnology, biomedicine, and core biological questions.</p>","PeriodicalId":15107,"journal":{"name":"Journal of Bacteriology","volume":" ","pages":"e0006225"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/jb.00062-25","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Archaea, once thought limited to extreme environments, are now recognized as ubiquitous and fundamental players in global ecosystems. While morphologically similar to bacteria, they are a distinct domain of life and are evolutionarily closer to eukaryotes. The development of model archaeal systems has facilitated studies that have underscored unique physiological, biochemical, and genetic characteristics of archaea. Haloferax volcanii stands out as a model archaeon due to its ease of culturing, ability to grow on defined media, amenability to genetic and biochemical methods, as well as the support from a highly collaborative community. This haloarchaeon has been instrumental in exploring diverse aspects of archaeal biology, ranging from polyploidy, replication origins, and post-translational modifications to cell surface biogenesis, metabolism, and adaptation to high-salt environments. The extensive use of Hfx. volcanii further catalyzed the development of new technologies and databases, facilitating discovery-driven research that offers significant implications for biotechnology, biomedicine, and core biological questions.
期刊介绍:
The Journal of Bacteriology (JB) publishes research articles that probe fundamental processes in bacteria, archaea and their viruses, and the molecular mechanisms by which they interact with each other and with their hosts and their environments.