Xiehong Liu, Huiqi Zhao, Sisi Liu, Siao Wen, Wenjuan Fan, Qiong Xie, Bo Cui, Lin Zhou, Jianqiang Peng, Hongwei Pan, Zhaofen Zheng, Qinghai Zhang
{"title":"Comparison of the effects of metformin and empagliflozin on cardiac function in heart failure with preserved ejection fraction mice.","authors":"Xiehong Liu, Huiqi Zhao, Sisi Liu, Siao Wen, Wenjuan Fan, Qiong Xie, Bo Cui, Lin Zhou, Jianqiang Peng, Hongwei Pan, Zhaofen Zheng, Qinghai Zhang","doi":"10.3389/fcvm.2025.1533820","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Recent evidence suggests that empagliflozin (EMPA) and metformin (MET) may improve prognosis in heart failure with preserved ejection fraction (HFpEF) patients. This study aims to compare their effects on cardiac structure and function in HFpEF.</p><p><strong>Methods: </strong>Male C57BL/6J mice were fed a high-fat diet with L-NAME for 8 weeks to induce HFpEF, followed by 4 weeks of MET or EMPA treatment. Cardiac structure and function were assessed. Network pharmacology and bioinformatics identified key targets, validated by RT-qPCR and WB.</p><p><strong>Results: </strong>EMPA-treated mice lost weight, unlike MET-treated ones. MET reduced systolic blood pressure significantly. Both treatments improved glucose tolerance; MET enhanced insulin sensitivity. EMPA increased exercise tolerance by extending exhaustion distance. Both treatments improved diastolic function, reduced heart weight, and attenuated myocardial fibrosis and hypertrophy. Plasma NT-proBNP levels were slightly elevated but not significant. EMPA downregulated HSP90 mRNA and protein expression; both drugs downregulated TGFβ.</p><p><strong>Conclusion: </strong>MET and EMPA improve cardiac fibrosis, diastolic function, and pulmonary congestion in HFpEF mice. MET acts by downregulating TGFβ, while EMPA affects collagen metabolism and downregulates HSP90 and TGFβ. These findings offer insights into HFpEF treatment.</p>","PeriodicalId":12414,"journal":{"name":"Frontiers in Cardiovascular Medicine","volume":"12 ","pages":"1533820"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12069290/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cardiovascular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcvm.2025.1533820","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Recent evidence suggests that empagliflozin (EMPA) and metformin (MET) may improve prognosis in heart failure with preserved ejection fraction (HFpEF) patients. This study aims to compare their effects on cardiac structure and function in HFpEF.
Methods: Male C57BL/6J mice were fed a high-fat diet with L-NAME for 8 weeks to induce HFpEF, followed by 4 weeks of MET or EMPA treatment. Cardiac structure and function were assessed. Network pharmacology and bioinformatics identified key targets, validated by RT-qPCR and WB.
Results: EMPA-treated mice lost weight, unlike MET-treated ones. MET reduced systolic blood pressure significantly. Both treatments improved glucose tolerance; MET enhanced insulin sensitivity. EMPA increased exercise tolerance by extending exhaustion distance. Both treatments improved diastolic function, reduced heart weight, and attenuated myocardial fibrosis and hypertrophy. Plasma NT-proBNP levels were slightly elevated but not significant. EMPA downregulated HSP90 mRNA and protein expression; both drugs downregulated TGFβ.
Conclusion: MET and EMPA improve cardiac fibrosis, diastolic function, and pulmonary congestion in HFpEF mice. MET acts by downregulating TGFβ, while EMPA affects collagen metabolism and downregulates HSP90 and TGFβ. These findings offer insights into HFpEF treatment.
期刊介绍:
Frontiers? Which frontiers? Where exactly are the frontiers of cardiovascular medicine? And who should be defining these frontiers?
At Frontiers in Cardiovascular Medicine we believe it is worth being curious to foresee and explore beyond the current frontiers. In other words, we would like, through the articles published by our community journal Frontiers in Cardiovascular Medicine, to anticipate the future of cardiovascular medicine, and thus better prevent cardiovascular disorders and improve therapeutic options and outcomes of our patients.