Eslam R El-Sawy, Mohamed S Abdel-Aziz, Gilbert Kirsch
{"title":"3-Acetyl Indole in the Synthesis of Natural Bioactive Compounds.","authors":"Eslam R El-Sawy, Mohamed S Abdel-Aziz, Gilbert Kirsch","doi":"10.2174/0115701794325027240827043203","DOIUrl":null,"url":null,"abstract":"<p><p>Natural products, with their various sources from plants, marine organisms, and microorganisms, are considered a key source and inspiration for medicines and continue to be so. Indole alkaloids are a class of alkaloids and represent a large subunit of natural products. Indole alkaloids of biological importance are numerous and cover a wide range of pharmaceutical applications, including anticancer, antiviral, antimicrobial, anti-inflammatory, and antioxidant. Obtaining natural, biologically active indole compounds involves isolating them from their natural sources or preparing them synthetically. 3-Substituted indoles represent an emerging structural class of marine alkaloids based on their high degree of biological activity. 3-Acetyl indole is an important core used as a starting material for synthesizing many bioactive indole alkaloids. (5-Indole)oxazole alkaloids, β-carboline alkaloids, bis-indole alkaloids, chuangxinmycin, meridianine, and (±) indolemycin are the most important indole alkaloids that are prepared starting from 3-acety indole. The present review provides comprehensive information on the structures and the synthesis of bioactive indole alkaloids utilizing 3-acetyl indole and its derivatives as starting compounds. Additionally, it also spotlights the diverse biological activities of these compounds.</p>","PeriodicalId":11101,"journal":{"name":"Current organic synthesis","volume":"22 3","pages":"328-341"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current organic synthesis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115701794325027240827043203","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Natural products, with their various sources from plants, marine organisms, and microorganisms, are considered a key source and inspiration for medicines and continue to be so. Indole alkaloids are a class of alkaloids and represent a large subunit of natural products. Indole alkaloids of biological importance are numerous and cover a wide range of pharmaceutical applications, including anticancer, antiviral, antimicrobial, anti-inflammatory, and antioxidant. Obtaining natural, biologically active indole compounds involves isolating them from their natural sources or preparing them synthetically. 3-Substituted indoles represent an emerging structural class of marine alkaloids based on their high degree of biological activity. 3-Acetyl indole is an important core used as a starting material for synthesizing many bioactive indole alkaloids. (5-Indole)oxazole alkaloids, β-carboline alkaloids, bis-indole alkaloids, chuangxinmycin, meridianine, and (±) indolemycin are the most important indole alkaloids that are prepared starting from 3-acety indole. The present review provides comprehensive information on the structures and the synthesis of bioactive indole alkaloids utilizing 3-acetyl indole and its derivatives as starting compounds. Additionally, it also spotlights the diverse biological activities of these compounds.
期刊介绍:
Current Organic Synthesis publishes in-depth reviews, original research articles and letter/short communications on all areas of synthetic organic chemistry i.e. asymmetric synthesis, organometallic chemistry, novel synthetic approaches to complex organic molecules, carbohydrates, polymers, protein chemistry, DNA chemistry, supramolecular chemistry, molecular recognition and new synthetic methods in organic chemistry. The frontier reviews provide the current state of knowledge in these fields and are written by experts who are internationally known for their eminent research contributions. The journal is essential reading to all synthetic organic chemists. Current Organic Synthesis should prove to be of great interest to synthetic chemists in academia and industry who wish to keep abreast with recent developments in key fields of organic synthesis.