Laia Martin-Perez, Carolina Contreras, Amparo Chiralt, Chelo Gonzalez-Martinez
{"title":"Active Polylactic Acid (PLA) Films Incorporating Almond Peel Extracts for Food Preservation.","authors":"Laia Martin-Perez, Carolina Contreras, Amparo Chiralt, Chelo Gonzalez-Martinez","doi":"10.3390/molecules30091988","DOIUrl":null,"url":null,"abstract":"<p><p>Almond peel extracts, containing 0.2-0.8% (<i>w</i>/<i>w</i>) phenolic compounds with notable antioxidant and antimicrobial activities, could be used as a natural source of active compounds for the development of active films for food preservation. In this study, almond peel extracts obtained by subcritical water extraction at 160 and 180 °C were incorporated into PLA films (PLA-E160 and PLA-E180). The films were characterized in terms of their microstructure, mechanical, barrier, optical and thermal properties. Furthermore, the release of phenolic compounds and hydroximethylfurfural (HFM) into food simulants with different polarity was evaluated, as well as the film's potential antioxidant and antimicrobial activities. To validate their effectiveness as active packaging materials, shelf-life studies were conducted on fresh orange juice and sunflower oil packaged using PLA-160 films. The results show that the incorporation of the almond peel extracts led to significant changes in the films' microstructure and mechanical properties, which became darker, mechanically less resistant, and stretchable (<i>p</i> < 0.05), with slightly lower thermal stability than neat PLA films. The release of phenolic compounds and HFM from extract-enriched films was promoted in the 95% ethanol simulant due to the matrix swelling and relaxation. Food products packaged with PLA-E160 exhibited slower oxidative degradation during storage, as indicated by the higher ascorbic acid content and hue color in orange juice and lower peroxide content in sunflower oil. Nevertheless, both in vivo and in vitro studies showed no antimicrobial effectiveness from the films, likely due to the limited release of active compounds to the surrounding medium. Thus, almond peel extract conferred valuable properties to PLA films, effectively reducing oxidative reactions in food products sensitive to these deterioration processes.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":"30 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12073344/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules30091988","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Almond peel extracts, containing 0.2-0.8% (w/w) phenolic compounds with notable antioxidant and antimicrobial activities, could be used as a natural source of active compounds for the development of active films for food preservation. In this study, almond peel extracts obtained by subcritical water extraction at 160 and 180 °C were incorporated into PLA films (PLA-E160 and PLA-E180). The films were characterized in terms of their microstructure, mechanical, barrier, optical and thermal properties. Furthermore, the release of phenolic compounds and hydroximethylfurfural (HFM) into food simulants with different polarity was evaluated, as well as the film's potential antioxidant and antimicrobial activities. To validate their effectiveness as active packaging materials, shelf-life studies were conducted on fresh orange juice and sunflower oil packaged using PLA-160 films. The results show that the incorporation of the almond peel extracts led to significant changes in the films' microstructure and mechanical properties, which became darker, mechanically less resistant, and stretchable (p < 0.05), with slightly lower thermal stability than neat PLA films. The release of phenolic compounds and HFM from extract-enriched films was promoted in the 95% ethanol simulant due to the matrix swelling and relaxation. Food products packaged with PLA-E160 exhibited slower oxidative degradation during storage, as indicated by the higher ascorbic acid content and hue color in orange juice and lower peroxide content in sunflower oil. Nevertheless, both in vivo and in vitro studies showed no antimicrobial effectiveness from the films, likely due to the limited release of active compounds to the surrounding medium. Thus, almond peel extract conferred valuable properties to PLA films, effectively reducing oxidative reactions in food products sensitive to these deterioration processes.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.