Variational quantum metrology with the Loschmidt echo.

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2025-03-10 eCollection Date: 2025-05-01 DOI:10.1093/nsr/nwaf091
Ran Liu, Ze Wu, Xiaodong Yang, Yuchen Li, Hui Zhou, Zhaokai Li, Yuquan Chen, Haidong Yuan, Xinhua Peng
{"title":"Variational quantum metrology with the Loschmidt echo.","authors":"Ran Liu, Ze Wu, Xiaodong Yang, Yuchen Li, Hui Zhou, Zhaokai Li, Yuquan Chen, Haidong Yuan, Xinhua Peng","doi":"10.1093/nsr/nwaf091","DOIUrl":null,"url":null,"abstract":"<p><p>By leveraging quantum effects, such as superposition and entanglement, quantum metrology promises higher precision than classical strategies. It is, however, a challenging task to achieve the higher precision on practical systems. This is mainly due to difficulties in engineering nonclassical states and performing nontrivial measurements on the system, especially when the number of particles is large. Here we propose a variational scheme with the Loschmidt echo for quantum metrology. By utilizing hardware-efficient ansatzes in the design of variational quantum circuits, the quantum Fisher information (QFI) of the probe state can be extracted from the experimentally measured Loschmidt echo in a scalable manner. This QFI is then used to guide the online optimization of the preparation of the probe state. We experimentally implement the scheme on an ensemble of 10-spin quantum processors and achieve a 12.4-dB enhancement of the measurement precision over the uncorrelated states, which is close to the theoretical limit. The scheme can also be employed on various other noisy intermediate-scale quantum devices, which provides a promising protocol to demonstrate quantum advantages.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 5","pages":"nwaf091"},"PeriodicalIF":16.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12023863/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwaf091","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

By leveraging quantum effects, such as superposition and entanglement, quantum metrology promises higher precision than classical strategies. It is, however, a challenging task to achieve the higher precision on practical systems. This is mainly due to difficulties in engineering nonclassical states and performing nontrivial measurements on the system, especially when the number of particles is large. Here we propose a variational scheme with the Loschmidt echo for quantum metrology. By utilizing hardware-efficient ansatzes in the design of variational quantum circuits, the quantum Fisher information (QFI) of the probe state can be extracted from the experimentally measured Loschmidt echo in a scalable manner. This QFI is then used to guide the online optimization of the preparation of the probe state. We experimentally implement the scheme on an ensemble of 10-spin quantum processors and achieve a 12.4-dB enhancement of the measurement precision over the uncorrelated states, which is close to the theoretical limit. The scheme can also be employed on various other noisy intermediate-scale quantum devices, which provides a promising protocol to demonstrate quantum advantages.

洛施密特回波的变分量子计量学。
通过利用量子效应,如叠加和纠缠,量子计量有望比经典策略更高的精度。然而,在实际系统中实现更高的精度是一项具有挑战性的任务。这主要是由于工程非经典状态和对系统进行非平凡测量的困难,特别是当粒子数量很大时。本文提出了一种利用洛施密特回波进行量子计量的变分方案。通过在变分量子电路设计中利用硬件高效分析,可以以可扩展的方式从实验测量的洛施密特回波中提取探针状态的量子费雪信息(QFI)。然后使用该QFI来指导探针状态制备的在线优化。我们在一个10自旋量子处理器的集合上实验实现了该方案,并实现了比不相关态的测量精度提高12.4 db,接近理论极限。该方案也可用于其他各种有噪声的中等规模量子器件,为展示量子优势提供了一种有前途的协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信