Antibiotic resistance genes in Escherichia coli - literature review.

IF 6 2区 生物学 Q1 MICROBIOLOGY
Ádám Kerek, István Román, Ábel Szabó, Dóra Kovács, Gábor Kardos, László Kovács, Ákos Jerzsele
{"title":"Antibiotic resistance genes in <i>Escherichia coli</i> - literature review.","authors":"Ádám Kerek, István Román, Ábel Szabó, Dóra Kovács, Gábor Kardos, László Kovács, Ákos Jerzsele","doi":"10.1080/1040841X.2025.2492156","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial resistance threatens humans and animals worldwide and is recognized as one of the leading global public health issues. <i>Escherichia coli</i> (<i>E. coli</i>) has an unquestionable role in carrying and transmitting antibiotic resistance genes (ARGs), which in many cases are encoded on plasmids or phage, thus creating the potential for horizontal gene transfer. In this literature review, the authors summarize the major antibiotic resistance genes occurring in <i>E. coli</i> bacteria, through the major antibiotic classes. The aim was not only listing the resistance genes against the clinically relevant antibiotics, used in the treatment of <i>E. coli</i> infections, but also to cover the entire resistance gene carriage in <i>E. coli</i>, providing a more complete picture. We started with the long-standing antibiotic groups (beta-lactams, aminoglycosides, tetracyclines, sulfonamides and diaminopyrimidines), then moved toward the newer groups (phenicols, peptides, fluoroquinolones, nitrofurans and nitroimidazoles), and in every group we summarized the resistance genes grouped by the mechanism of their action (enzymatic inactivation, antibiotic efflux, reduced permeability, etc.). We observed that the frequency of antibiotic resistance mechanisms changes in the different groups.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-35"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/1040841X.2025.2492156","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antimicrobial resistance threatens humans and animals worldwide and is recognized as one of the leading global public health issues. Escherichia coli (E. coli) has an unquestionable role in carrying and transmitting antibiotic resistance genes (ARGs), which in many cases are encoded on plasmids or phage, thus creating the potential for horizontal gene transfer. In this literature review, the authors summarize the major antibiotic resistance genes occurring in E. coli bacteria, through the major antibiotic classes. The aim was not only listing the resistance genes against the clinically relevant antibiotics, used in the treatment of E. coli infections, but also to cover the entire resistance gene carriage in E. coli, providing a more complete picture. We started with the long-standing antibiotic groups (beta-lactams, aminoglycosides, tetracyclines, sulfonamides and diaminopyrimidines), then moved toward the newer groups (phenicols, peptides, fluoroquinolones, nitrofurans and nitroimidazoles), and in every group we summarized the resistance genes grouped by the mechanism of their action (enzymatic inactivation, antibiotic efflux, reduced permeability, etc.). We observed that the frequency of antibiotic resistance mechanisms changes in the different groups.

大肠杆菌中抗生素耐药基因的文献综述。
抗菌素耐药性威胁着全世界的人类和动物,并被公认为全球主要公共卫生问题之一。大肠杆菌在携带和传播抗生素耐药基因(ARGs)方面具有不容置疑的作用,在许多情况下,这些基因被编码在质粒或噬菌体上,从而产生了水平基因转移的潜力。在这篇文献综述中,作者通过主要的抗生素类别,总结了大肠杆菌中发生的主要抗生素耐药基因。目的不仅是列出用于治疗大肠杆菌感染的临床相关抗生素的耐药基因,而且还包括大肠杆菌中整个耐药基因的携带,提供更完整的图景。我们从长期存在的抗生素类群(β -内酰胺类、氨基糖苷类、四环素类、磺胺类和二氨基嘧啶类)开始,然后转向较新的类群(苯酚类、多肽类、氟喹诺酮类、硝基呋喃类和硝基咪唑类),并在每一类群中根据其作用机制(酶失活、抗生素外排、降低渗透性等)对耐药基因进行了总结。我们观察到抗生素耐药机制的频率在不同的组中有所变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Critical Reviews in Microbiology
Critical Reviews in Microbiology 生物-微生物学
CiteScore
14.70
自引率
0.00%
发文量
99
期刊介绍: Critical Reviews in Microbiology is an international, peer-reviewed journal that publishes comprehensive reviews covering all areas of microbiology relevant to humans and animals, including medical and veterinary microbiology, public health and environmental microbiology. These may include subjects related to microbial molecular biology, immunopathogenicity, physiology, biochemistry, structure, and epidemiology. Of particular interest are reviews covering clinical aspects of bacterial, virological, fungal and parasitic diseases. All reviews must be analytical, comprehensive, and balanced in nature. Editors welcome uninvited submissions, as well as suggested topics for reviews accompanied by an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信