Antimicrobial peptides: evolving soldiers in the battle against drug-resistant superbugs.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Piyush Baindara, Sumeeta Kumari, Roy Dinata, Santi M Mandal
{"title":"Antimicrobial peptides: evolving soldiers in the battle against drug-resistant superbugs.","authors":"Piyush Baindara, Sumeeta Kumari, Roy Dinata, Santi M Mandal","doi":"10.1007/s11033-025-10533-z","DOIUrl":null,"url":null,"abstract":"<p><p>The discovery of antibiotics was one of the greatest achievements in human history, however, antibiotic resistance evolved no later than the introduction of antibiotics. The rapid evolution of antibiotic-resistant pathogens soon became frightening and remained a global healthcare threat. There is an urgent need to have new alternatives or new strategies to combat the multi-drug resistant superbugs such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), carbapenem-resistant Pseudomonas aeruginosa (CR-PA), extended-spectrum β-lactamases (ESBL) bearing multidrug-resistant Acinetobacter baumannii (MDR-AB), Escherichia coli (E. coli), and Klebsiella pneumoniae (K. pneumoniae). Antimicrobial peptides (AMPs) have been considered promising agents equipped with unique mechanisms of action along with several other benefits to fight the battle against drug-resistant superbugs. Overall, the current review summarizes the mechanisms of drug-resistant development, the mechanism of action adopted by AMPs to combat drug-resistant pathogens, and the immunomodulatory properties of AMPs. Additionally, we have also reviewed the synergistic potential of AMPs with conventional antibiotics along with the associated challenges and limitations of AMPs in the way of pharmacological development for therapeutic applications in clinical settings.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"432"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-025-10533-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The discovery of antibiotics was one of the greatest achievements in human history, however, antibiotic resistance evolved no later than the introduction of antibiotics. The rapid evolution of antibiotic-resistant pathogens soon became frightening and remained a global healthcare threat. There is an urgent need to have new alternatives or new strategies to combat the multi-drug resistant superbugs such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), carbapenem-resistant Pseudomonas aeruginosa (CR-PA), extended-spectrum β-lactamases (ESBL) bearing multidrug-resistant Acinetobacter baumannii (MDR-AB), Escherichia coli (E. coli), and Klebsiella pneumoniae (K. pneumoniae). Antimicrobial peptides (AMPs) have been considered promising agents equipped with unique mechanisms of action along with several other benefits to fight the battle against drug-resistant superbugs. Overall, the current review summarizes the mechanisms of drug-resistant development, the mechanism of action adopted by AMPs to combat drug-resistant pathogens, and the immunomodulatory properties of AMPs. Additionally, we have also reviewed the synergistic potential of AMPs with conventional antibiotics along with the associated challenges and limitations of AMPs in the way of pharmacological development for therapeutic applications in clinical settings.

抗菌肽:对抗耐药超级细菌的进化士兵。
抗生素的发现是人类历史上最伟大的成就之一,然而,抗生素耐药性的发展并不晚于抗生素的引入。耐抗生素病原体的快速进化很快变得令人恐惧,并仍然是全球医疗保健的威胁。目前迫切需要新的替代方案或新的策略来对抗多重耐药超级细菌,如耐甲氧西林金黄色葡萄球菌(MRSA)、耐万古霉素肠球菌(VRE)、耐碳青霉烯铜绿假单胞菌(CR-PA)、耐多重耐药鲍曼不动杆菌(MDR-AB)、大肠杆菌(E. coli)和肺炎克雷伯菌(K. pneumoniae)等。抗菌肽(AMPs)被认为是具有独特作用机制的有前途的药物,并具有其他几种益处,可以对抗耐药超级细菌。综上所述,本文就抗菌肽的耐药发展机制、抗菌肽对抗耐药病原体的作用机制以及抗菌肽的免疫调节特性进行综述。此外,我们还回顾了抗菌肽与传统抗生素的协同潜力,以及抗菌肽在临床治疗应用的药理学开发方面的相关挑战和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信