"Oxygen and derived reactive species in Legume - Rhizobia interactions: paradoxes and dual roles".

IF 5.6 2区 生物学 Q1 PLANT SCIENCES
Eliane Meilhoc, Alexandre Boscari, Nicolas Pauly, Marc Lepetit, Pierre Frendo, Claude Bruand, Alain Puppo, Renaud Brouquisse
{"title":"\"Oxygen and derived reactive species in Legume - Rhizobia interactions: paradoxes and dual roles\".","authors":"Eliane Meilhoc, Alexandre Boscari, Nicolas Pauly, Marc Lepetit, Pierre Frendo, Claude Bruand, Alain Puppo, Renaud Brouquisse","doi":"10.1093/jxb/eraf160","DOIUrl":null,"url":null,"abstract":"<p><p>Biological nitrogen fixation (BNF) between legumes and Rhizobia is the result of a symbiosis characterized by the formation of a new organ, the nodule, in which the plants house and feed the bacteria. Oxygen (O2) concentration inside the nodule is very low (on the order of a few tens of nanomolar). The nitrogenase which is responsible for the reduction of atmospheric nitrogen (N2) to ammonia (NH3) is irreversibly inhibited by traces of O2, while O2 is required for the overall process of N2 fixation which consumes high amounts of energy and reducing power. How is this paradox solved? The set-up of a physical and chemical O2 diffusion barrier, including the synthesis of numerous leghemoglobins, a class of hemoproteins with a very high O2 absorption capacity, was evidenced. However, why are so many leghemoglobin genes present while they appear to be mainly expressed in the same nodule zone? Furthermore, why do the bacterial symbionts contain multiple O2 sensors despite the existence of a very low O2 tension inside the nodule? On the other hand, the O2 derived reactive species, such as superoxide radical, hydrogen peroxide and nitric oxide, which play important metabolic and signalling roles in the symbiotic process, appear to act as Janus molecules. They exhibit opposite effects throughout symbiosis establishment and nodule life. The aim of this review is to provide possible answers to the questions asked and to highlight the dual roles of O2 reactive species in nodule development, functioning and senescence.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/eraf160","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Biological nitrogen fixation (BNF) between legumes and Rhizobia is the result of a symbiosis characterized by the formation of a new organ, the nodule, in which the plants house and feed the bacteria. Oxygen (O2) concentration inside the nodule is very low (on the order of a few tens of nanomolar). The nitrogenase which is responsible for the reduction of atmospheric nitrogen (N2) to ammonia (NH3) is irreversibly inhibited by traces of O2, while O2 is required for the overall process of N2 fixation which consumes high amounts of energy and reducing power. How is this paradox solved? The set-up of a physical and chemical O2 diffusion barrier, including the synthesis of numerous leghemoglobins, a class of hemoproteins with a very high O2 absorption capacity, was evidenced. However, why are so many leghemoglobin genes present while they appear to be mainly expressed in the same nodule zone? Furthermore, why do the bacterial symbionts contain multiple O2 sensors despite the existence of a very low O2 tension inside the nodule? On the other hand, the O2 derived reactive species, such as superoxide radical, hydrogen peroxide and nitric oxide, which play important metabolic and signalling roles in the symbiotic process, appear to act as Janus molecules. They exhibit opposite effects throughout symbiosis establishment and nodule life. The aim of this review is to provide possible answers to the questions asked and to highlight the dual roles of O2 reactive species in nodule development, functioning and senescence.

豆科植物-根瘤菌相互作用中的氧和衍生活性物质:悖论和双重作用。
豆科植物和根瘤菌之间的生物固氮(BNF)是一种共生的结果,其特征是形成一个新的器官,即根瘤,植物在根瘤中为细菌提供住所和食物。结节内的氧(O2)浓度很低(约为几十纳摩尔)。负责将大气中的氮(N2)还原为氨(NH3)的固氮酶被微量O2不可逆地抑制,而整个固氮过程需要O2,消耗大量的能量和还原力。如何解决这个悖论呢?物理和化学氧气扩散屏障的建立,包括许多血红蛋白的合成,一类具有非常高的氧气吸收能力的血红蛋白。然而,为什么存在如此多的血红蛋白基因,而它们似乎主要表达在同一结节区?此外,为什么细菌共生体含有多个O2传感器,尽管存在非常低的氧张力在结节内?另一方面,O2衍生的活性物质,如超氧自由基、过氧化氢和一氧化氮,在共生过程中起着重要的代谢和信号作用,似乎扮演着Janus分子的角色。它们在共生关系建立和结核生命过程中表现出相反的作用。本文综述的目的是为这些问题提供可能的答案,并强调O2活性物质在结节发育、功能和衰老中的双重作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信