Carrier-envelope-phase characterization of ultrafast mid-infrared laser pulses through harmonic generation and interference in argon.

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-01-21 DOI:10.1038/s42005-025-01949-x
Claudia Gollner, Valentina Shumakova, Jacob Barker, Audrius Pugžlys, Andrius Baltuška, Pavel Polynkin
{"title":"Carrier-envelope-phase characterization of ultrafast mid-infrared laser pulses through harmonic generation and interference in argon.","authors":"Claudia Gollner, Valentina Shumakova, Jacob Barker, Audrius Pugžlys, Andrius Baltuška, Pavel Polynkin","doi":"10.1038/s42005-025-01949-x","DOIUrl":null,"url":null,"abstract":"<p><p>The propagation of an intense, femtosecond, mid-infrared laser pulse in a gaseous medium results in the efficient generation of spectrally overlapping low-order harmonics, whose optical carrier phases are linked to the carrier-envelope phase (CEP) of the mid-infrared driver pulse. Random peak-power fluctuations of the driver pulses, converted to the fluctuations of the nonlinear phases, acquired by the pulses on propagation, cause this phase correlation to smear out. We show that this seemingly irreversible loss of phase can be recovered, and that the complete information needed for the phase correction is contained in the harmonic spectra itself. The optical phases of the intense driver pulse and its harmonics, as fragile as they appear to be against even weak disturbances, evolve deterministically during highly nonlinear propagation through the extended ionization region.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"33"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12015979/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s42005-025-01949-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The propagation of an intense, femtosecond, mid-infrared laser pulse in a gaseous medium results in the efficient generation of spectrally overlapping low-order harmonics, whose optical carrier phases are linked to the carrier-envelope phase (CEP) of the mid-infrared driver pulse. Random peak-power fluctuations of the driver pulses, converted to the fluctuations of the nonlinear phases, acquired by the pulses on propagation, cause this phase correlation to smear out. We show that this seemingly irreversible loss of phase can be recovered, and that the complete information needed for the phase correction is contained in the harmonic spectra itself. The optical phases of the intense driver pulse and its harmonics, as fragile as they appear to be against even weak disturbances, evolve deterministically during highly nonlinear propagation through the extended ionization region.

超快中红外激光脉冲在氩气中谐波产生和干涉的载波包络相位表征。
在气体介质中传播强飞秒中红外激光脉冲会产生频谱重叠的低阶谐波,其光载波相位与中红外驱动脉冲的载波包络相位(CEP)相关联。驱动脉冲的随机峰值功率波动,被转换成脉冲在传播过程中获得的非线性相位波动,导致这种相位相关性被抹去。我们表明,这种看似不可逆的相位损失可以恢复,并且相位校正所需的完整信息包含在谐波谱本身中。强驱动脉冲的光学相位及其谐波,即使在微弱的干扰下也很脆弱,在通过扩展电离区域的高度非线性传播过程中,确定地演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信